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1 Delsarte LPs for Codes

We say that C ⊆ Fn
2 is a distance-d code if ∣x − y∣ ≥ d for all x, y ∈ C with x ≠ y. What is the

largest possible size of a distance-d code in Fn
2? Call this A(n, d).

Here is an integer program expressing A(n, d):

Variables: f ∶ Fn
2 → {0,1}

max ∑
x∈Fn

2

f(x)

s.t. f(x)f(y) = 0 if ∣x − y∣ ≤ d and x ≠ y (Distance constraints)

All terms have degree at most 2 in f , so this program admits a natural SDP relaxation.
Moreover, if we recognize this as Maximum Independent Set in the graph with vertex set
Fn
2 and edges between vertices at distance ≤ d, we can remember that the SDP relaxation of

Independent Set is the Lovász ϑ′ function. This SDP is written below, and it is not hard to
see that it is a relaxation of the integer program.1

Variables: M ∈ RFn
2×F

n
2 symmetric

max ∑
x,y∈Fn

2

M[x, y]

s.t. tr(M) = 1 (Normalization)
M[x, y] = 0 if ∣x − y∣ ≤ d and x ≠ y (Distance constraints)
M[x, y] ≥ 0 (Non-negativity)
M ⪰ 0 (PSDness)

Dual of the ϑ′ SDP:

Variables: N ∈ RFn
2×F

n
2 symmetric

min tr(N)
s.t. ∑

x,y∈Fn
2

N[x, y] = 2n (Normalization)

N[x, y] ≤ 0 if ∣x − y∣ ≥ d (Distance constraints)
N ⪰ 0 (PSDness)

Therefore, to bound the value of A(n, d), we construct feasible solutions to the dual SDP.

1There is a small difference between the ϑ function and the ϑ′ function, which is that the ϑ′ function
has additional non-negativity constraints M[x, y] ≥ 0. The ϑ function is also equal to the degree-2 Sum-of-
Squares relaxation of the integer program.
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1.1 Proof of the second LP bound

Theorem 1.1 (Second LP bound [MRRW77]). Let d = δn with δ ∈ (0, 12). Then

1

n
log2A(n, d) ≤ min

δ/2≤α≤1/2
1 − h2(α) + h2(τ)

where h2 is the binary entropy function and τ = τ(α, δ) is defined implicitly by the equation

δ = (α − τ)(1 − α − τ)
1 + 2
√
τ(1 − τ)

.

The idea is to construct the dual solution N inside an association scheme, specifically
the Johnson scheme (the simpler Hamming scheme is used for the weaker first LP bound).
We follow the conceptual approach of Linial-Loyfer [LL23] and Barg-Nogin [BN06] based on
the theory of association schemes included in Section 2.

Fix k ∈ {0,1, . . . , n/2} and let A0,A2,A4, . . . ,A2k ∈ RFn
2×F

n
2 be the matrices of the Johnson

scheme J(n, k),

Ai[x, y] =
⎧⎪⎪⎨⎪⎪⎩

1 ∣x∣ = k, ∣y∣ = k, ∣x − y∣ = i
0 otherwise

The candidate solution is:

N =
k

∑
i=0

g(i)A2i

for g ∶ {0,1, . . . , k} → R. Let Qt(x), t ∈ {0,1, . . . , k} be the Q-polynomials of the Johnson
scheme. We choose g(x) = (Q1(x)m −Q1(d)m)Qt(x)2 for an odd m ∈ N and some choice of
t ∈ {0,1, . . . , k} to be decided later (both k and t will be Θ(n) while logn≪ m≪

√
n. The

solution is not yet normalized, either).

Observe that N satisfies the distance constraints since Qt(x)2 ≥ 0 and Q1 is a linear
function [Del73]:2

Q1(x) =
(n − 1)

2k(n − k)
(2k(n − k) − nx)

The crucial PSDness constraint for N reduces to checking that the coefficients of g are
non-negative in the basis of Q-functions (Proposition 2.8). We will choose m, t so that
(Qm

1 − Q1(d)m)Qt has a non-negative Q-function expansion. Then multiplying with the
remaining factor of Qt implies that the expansion of g is still non-negative since the “Krein
parameters” satisfy qkij ≥ 0 (Proposition 2.15).

In the expansion of (Qm
1 −Q1(d)m)Qt = Qm

1 Qt−Q1(d)mQt we can see that the first term is
a non-negative combination of Q-polynomials (again since qkij ≥ 0) whereas the second term
is the polynomial Qt with a negative coefficient −Q1(d)m. Therefore, all of the coefficients

2To make our proofs self-contained, it would suffice to calculate the function µ which counts the dimensions
of the eigenspaces of the Johnson scheme, given by µ(t) = (n

t
)−(

n
t−1
). The Q-polynomials are the orthogonal

polynomials for the simpler measure ν (Proposition 2.12) with normalization given by µ (Proposition 2.12).

2



on Qs, s ≠ t are guaranteed to be non-negative and we just need to ensure that the coefficient
on Qt remains non-negative.

To compute Qm
1 Qt we repeatedly use the three-term recurrence for the Q-polynomials:

Q1Qs = aQs−1 + bQs + cQs+1 (1)

for some coefficients a, b, c ≥ 0 which depend on s. For the Johnson scheme, we have the
following explicit formula [Del73, BN06]:3

Q1Qt =
n(n − 1)(t + 1)(k − t)(n − k − t)
2k(n − k)(n − 2t)(n − 2t + 1)

⋅Qt−1 (2)

+
⎛
⎝
n − 1 −

n(n − 1)((n + 2)k(n − k) − nt(n − t + 1))
2k(n − k)(n − 2t)(n − 2t + 2)

⎞
⎠
⋅Qt

+ n(n − 1)(k − t + 1)(n − k − t + 1)(n − t + 2)
2k(n − k)(n − 2t + 2)(n − 2t + 3)

⋅Qt+1 .

We can make simplifications since k, t, n are on the scale Θ(n):

Q1Qt ≈
n2t(k − t)(n − k − t)
2k(n − k)(n − 2t)2

⋅Qt−1 (3)

+ (n − n3(k − t)(n − k − t)
2k(n − k)(n − 2t)2

) ⋅Qt

+ n2(k − t)(n − k − t)(n − t)
2k(n − k)(n − 2t)2

⋅Qt+1

= n ⋅Qt +
n(k − t)(n − k − t)
2k(n − k)(n − 2t)2

(nt ⋅Qt−1 − n2 ⋅Qt + n(n − t) ⋅Qt+1)

=∶ a′Qt−1 + b′Qt + c′Qt+1 . (4)

In summary, to calculate Qm
1 Qt, we interpret Eq. (1) as taking a walk on {0,1, . . . , k}

which starts at t and moves at each step from s to either s−1, s, or s+1. The final coefficient
on Qt can be computed by summing over walks which return to t.

Let
⋅= denote equality up to polynomial factors: x

⋅= y if 1
p(n) ⋅ y ≤ x ≤ q(n) ⋅ y for some

p, q ≤ O(nc) for a constant c.

Lemma 1.2. The coefficient of Qt in Qm
1 Qt is

⋅= to (b′ + 2
√
a′c′)m.

Proof. The coefficient of a given walk is the product of a, b, c in Eq. (1) for each step of
the walk. Convert the approximation in Eq. (3) into a = a′ ⋅ (1 ± O(1/n)) and similar for
b, c. Then the coefficient of a given walk is (a′)p(b′)q(c′)r ⋅ (1±O(m/n)) where p, q, r are the
number of −1,0, and +1 steps respectively.

3The three-term recurrence for a family of orthogonal polynomials has an explicit form based only on µ
and ν. Maybe there is also a combinatorial proof of this formula using the Johnson scheme eigenspaces?
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In order for the walk to return to t, the number of +1 steps and −1 steps must be the
same. Let this number be p. The number of walks with p such steps is ( m

p,p,m−2p) and the

coefficient of a given walk is (a′c′)p(b′)m−2p ⋅ (1±O(m/n)). Therefore, the total coefficient is

m/2

∑
p=0
( m

p, p,m − 2p
)(a′c′)p(b′)m−2p ⋅ (1 ±O(m/n))

=
⎛
⎝

m/2

∑
p=0
( m

p, p,m − 2p
)(a′c′)p(b′)m−2p

⎞
⎠
⋅ (1 ±O(m2/n))

Estimate the interior summation:

m/2

∑
p=0
( m

p, p,m − 2p
)(a′c′)p(b′)m−2p =

m/2

∑
p=0
(m
2p
)(2p

p
)(a′c′)p(b′)m−2p

⋅=
m/2

∑
p=0
(m
2p
)4p(a′c′)p(b′)m−2p ⋅= (b′ + 2

√
a′c′)m .

Recall that we want Lemma 1.2 to be larger than Q1(d)m. We have

Q1(d) =
(n − 1)

2k(n − k)
(2k(n − k) − nd) = n − n2d

2k(n − k)
+O(1)

Comparing the base of the exponent in Lemma 1.2 against Q1(d):

b′ + 2
√
a′c′ > n − n2d

2k(n − k)
⇐⇒ n(k − t)(n − k − t)(−n2 + 2n

√
t(n − t)) > −n2d(n − 2t)2

⇐⇒ d >
(k − t)(n − k − t)(n − 2

√
t(n − t))

(n − 2t)2

⇐⇒ d > (k − t)(n − k − t)
n + 2

√
t(n − t)

.

Divide by n and define the limiting constant parameters δ = d
n , τ =

t
n , α =

k
n ,

⇐⇒ δ > (α − τ)(1 − α − τ)
1 + 2
√
τ(1 − τ)

(5)

In conclusion, if Eq. (5) holds, then the base of the exponent in Lemma 1.2 is larger than
that of Q1(d) by a constant factor. Taking m≫ logn to control the polynomial error term
in Lemma 1.2, we obtain a positive lower bound of nΩ(m) on the coefficient on Qt and we
have satisfied the PSDness constraint.
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Finally we calculate the value of the candidate solution. Normalizing the solution and
calculating on the exponential scale, we show

1

n
log2 (

2n tr(N)
∑x,y∈Fn

2
N[x, y]

) ≤ 1 − h2(α) + h2(τ) + o(1) . (6)

The trace is

tr(N) = (n
k
)g(0) = (n

k
)(Q1(0)m −Q1(d)m)Qt(0)2 = (

n

k
)(Q1(0)m −Q1(d)m) ((

n

t
) − ( n

t − 1
))

2

(7)

The last equality is Proposition 2.24 using µ(t) = (nt)− (
n
t−1) for the Johnson scheme [Del73].

The denominator is

∑
x,y∈Fn

2

N[x, y] = (n
k
)
2

E
x∼ν

g(x) (8)

where ν is the distribution on {0,1, . . . , k} such that ν(i) ∝ (ki)(
n−k
i
). According to the

PSDness analysis, write g(x) = (∑t
s=0 csQs)Qt where cs ≥ 0 and ct ≥ nΩ(m) ≥ 1. The Q-

polynomials are orthogonal under ν (Corollary 2.13), therefore,

E
x∼ν

g(x) = ct E
x∼ν
[Qt(x)2] ≥ E

x∼ν
[Qt(x)2] = (

n

t
) − ( n

t − 1
) . (9)

The last equality is Proposition 2.12. Combining Eqs. (8), (9) and (7) yields Eq. (6) after
we ignore the term involving m (which is subexponential since m≪ n) and use the binomial
coefficient estimate 1

n log2 (
n
αn
) = h2(α) + o(1).

Remark 1.3. Eq. (5) is not feasible if α < δ/2. The explicit feasible range for τ is

α > τ > 1

2
− 1

2

√
1 − (δ −

√
4α(1 − α) − 2δ + δ2)

2
.

2 Association Schemes

2.1 Overview

Delsarte’s theory of association schemes is a beautiful theory of the combinatorial and spec-
tral properties of certain matrix families. There are several possible perspectives on this
theory. We will emphasize the “analytic” perspective: an association scheme is a matrix
algebra which admits a special type of spectral analysis, similar to Fourier analysis. The
goal of these notes is to synthesize the key results of the theory so that they may be used
for matrix analysis problems such as in Section 1.
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In particular, we restrict ourselves to Schurian association schemes, which are algebras
of matrices invariant under a group action.4 Given a transitive group action of G on a finite
set Ω, the corresponding Schurian association scheme consists of matrices M ∈ RΩ×Ω which
are G-invariant:

∀g ∈ G. ∀x, y ∈ Ω.M[x, y] =M[g ⋅ x, g ⋅ y] .

The Hamming scheme consists of matrices M ∈ RFn
2×F

n
2 such that M[x, y] only depends

on ∣x − y∣. The Johnson scheme consists of matrices M ∈ RJ(k)×J(k) such that M[x, y] only
depends on ∣x − y∣ where J(n, k) ∶= J(k) ∶= {x ∈ Fn

2 ∶ ∣x∣ = k} is the slice. These are the
Schurian association schemes for Ω = Fn

2 and Ω = J(k), respectively, with the action of Sn by
permuting the bits.

A matrix in the scheme can be efficiently represented by only its distinct entries. As-
sociation scheme theory describes the equivalence between spectral analysis of the matrices
in the scheme, and analysis of these compressed representations (which are exponentially
smaller representations for the Hamming and Johnson schemes). Moreover, there is a dual-
ity theory for association schemes which gives the association scheme additional structure (a
simple and nontrivial example is that the number of distinct eigenspaces equals the number
of distinct matrix entries, Proposition 2.3).

Although we describe the theory of association schemes in terms of matrices, a completely
equivalent viewpoint is through the analysis of spherical functions, such as (for the Johnson
scheme) f ∶ J(k) → R which only depends on the Hamming distance to a fixed point x0 ∈
J(k). Some ideas also generalize to spherical functions on infinite domains, such as radial
functions on Rn and spherical functions on Sn−1, the surface of the sphere.5 Gelfand pairs
provide a general framework for harmonic analysis in these settings, and at the end of the
note, we prove the exact correspondence between finite Gelfand pairs and commutative
Schurian association schemes.

The proofs themselves are rather trivial; almost none are more than a few lines long.
Despite this, the overall analytical framework is very strong and should not be underesti-
mated!

2.2 Matrix and function viewpoints

Definition 2.1 (Association scheme). For a finite set Ω and a partition R of Ω×Ω, the pair
(Ω,R) is an association scheme if:

(i) one of the blocks of R equals {(x,x) ∶ x ∈ Ω},

(ii) for all r ∈ R, the transpose of r is also in R ,

4While Schurian association schemes are arguably the most common schemes encountered in practice (in
particular the Hamming and Johnson schemes), the modern definition of an association scheme is purely com-
binatorial, so-called “group theory without groups” [BBIT21]. This allows to study e.g. distance-transitive
graphs within the same framework. Coherent configurations are a further combinatorial generalization.

5The sphere packing problem in these spaces also admits analogous linear programming bounds (Cohn–
Elkies bound for Rn and Kabatiansky–Levenshtein bound for Sn−1).
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(iii) for all ri, rj, rk ∈ R there exists an integer pkij ∈ N such that,

∀(x, z) ∈ rk. ∣{y ∈ Ω ∶ (x, y) ∈ ri, (y, z) ∈ rj}∣ = pkij .

The elements of R are called the relations of the scheme and pkij the intersection numbers.

Each association scheme corresponds to a space of Ω ×Ω matrices called the Bose–Mesner
algebra of the scheme. A matrix in the Bose–Mesner algebra is said to be “in the scheme”.

Definition 2.2 (Bose–Mesner algebra). The Bose–Mesner algebra of an association scheme
(Ω,R) is the matrix algebra generated by the matrices Mr ∈ RΩ×Ω for r ∈ R defined by

Mr[x, y] =
⎧⎪⎪⎨⎪⎪⎩

1 (x, y) ∈ relation r

0 otherwise .

The span of the Mr is closed under matrix multiplication by definition of the parameters
pkij in Definition 2.1. Hence the Mr are a basis for the Bose–Mesner algebra.

In order to make the core spectral theory work, we henceforth assume that the scheme
is symmetric and commutative (i.e. the matrices Mr are symmetric and commute). We also
study only Schurian schemes, defined by a finite set Ω and a group acting transitively on Ω,
and letting the relations R be the orbits of G on Ω ×Ω.

For Schurian schemes, the Bose–Mesner algebra consists exactly of the set of G-invariant
matrices M ∈ RΩ×Ω, which satisfy M[x, y] =M[g ⋅x, g ⋅y] for all x, y ∈ Ω, g ∈ G. Closure under
matrix multiplication is also clear for these schemes since the product of two G-invariant
matrices is G-invariant.

There are two equivalent viewpoints of the unsymmetrized objects in a scheme (Ω,R):

1. A matrix M ∈ RΩ×Ω.

2. A function f ∶ Ω → R specifying the x0 row of the matrix where x0 ∈ Ω is a fixed
basepoint (the choice of the basepoint is irrelevant—for Schurian schemes, this is due
to transitivity of the G action). This is a partially symmetrized representation of M
which we call a “spherical function”.

To fully remove the symmetry of the association scheme, we represent the matrix or
spherical function by its distinct entries using a function f ∶ R → R. Furthermore, there is a
“dual”, “Fourier”, or “spectral” representation of a matrix in the scheme by its eigenvalues
(scaled down by 1

∣Ω∣ by convention). This is written f̂ ∶ R̂ → R where R̂ are the mutual

eigenspaces of the scheme (i.e. the common refinement of the eigenspaces for all matrices in
the scheme, which exists by commutativity).

The first main theorem of association scheme theory is that ∣R∣ = ∣R̂∣. This parameter
is known as the dimension of the scheme (not to be confused with the dimension of the
matrices in the scheme, which is ∣Ω∣).
Proposition 2.3. ∣R∣ = ∣R̂∣
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To deduce this result, we observe that in addition to the basis {Mr}r∈R there is a second
natural basis for the Bose–Mesner algebra known as the primitive idempotents.

Definition 2.4 (Primitive idempotent, Eα). For α ∈ R̂, let Eα ∈ RΩ×Ω be the projection
matrix to the α eigenspace.

Proposition 2.5. The matrices Eα for α ∈ R̂ are a basis for the Bose–Mesner algebra.

Proof. The matrices Eα for α ∈ R̂ are linearly independent and span the Bose–Mesner algebra
by the commutativity assumption. It remains to prove that Eα is in the Bose–Mesner algebra.
For each pair of distinct eigenspaces α,β ∈ R̂, choose a matrix Aα,β in the Bose–Mesner
algebra which has different eigenvalues on α and β. By adding a multiple of the identity
matrix (which is always in the Bose–Mesner algebra), we may assume that Aα,β is zero on
β and nonzero on α. Since the Bose–Mesner algebra is closed under matrix multiplication,
the product ∏β∈R̂,β≠αAα,β remains in the algebra, and since this matrix is only nonzero on
α, it is a scalar multiple of Eα. We conclude that the Eα are in the Bose–Mesner algebra
and hence form a basis for it.

Comparing the dimensions of the Mr basis and the Eα basis proves Proposition 2.3. For
a matrix M in the scheme, letting f ∶ R → R be its distinct entries and f̂ ∶ R̂ → R be its
eigenvalues scaled down by 1

∣Ω∣ , we have the correspondence,

1

∣Ω∣
M = 1

∣Ω∣ ∑r∈R
f(r)Mr = ∑

α∈R̂
f̂(α)Eα . (10)

2.3 Fourier transform and P and Q functions

We have seen that functions f ∶ R → R or h ∶ R̂ → R represent matrices in the association
scheme. Define the Fourier transform (a.k.a. “MacWilliams transform”) and inverse Fourier
transform for the association scheme to be the mappings between these two representations.6

Definition 2.6 (Fourier transform and inverse Fourier transform). For M ∈ RΩ×Ω which is
represented by f ∶ R → R and dually represented by h ∶ R̂ → R, define the Fourier transform
and inverse Fourier transform by

f̂ = h , h̃ = f .

In general, the inverse Fourier transform is distinct from the Fourier transform. Note
that there may not be an association scheme structure on R̂ and so we should be careful
about which objects live on which side.

The Fourier transform and inverse Fourier transform can be interpreted as changing be-
tween the Mr and Eα bases. We (definitionally) make them explicit with P and Q functions.

6Fourier analysis over a finite Abelian group G corresponds to the Schurian scheme with Ω = G acting on
itself (although the scheme is not symmetric so the eigenvectors/Fourier characters are complex).
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Definition 2.7 (P and Q functions). For r ∈ R and α ∈ R̂, define Pr ∶ R̂ → R and Qα ∶ R → R
by

Pr(α) = eigenvalue of Mr on the α eigenspace Qα(r) = ∣Ω∣ ⋅ (r entries of Eα) .

Also define the matrices P ∈ RR̂×R and Q ∈ RR×R̂ by P[α, r] = Pr(α) and Q[r,α] = Qα(r).
Proposition 2.8. For f ∶ R → R and h ∶ R̂ → R,

f̂(α) = 1

∣Ω∣ ∑r∈R
f(r)Pr(α), h̃(r) = ∑

α∈R̂
h(α)Qα(r)

h(α) = 1

∣Ω∣ ∑r∈R
h̃(r)Pr(α), f(r) = ∑

α∈R̂
f̂(α)Qα(r) .

Viewed as vectors,

f̂ = 1

∣Ω∣
Pf h̃ =Qh

Proof. The P and Q functions are the basis change coefficients so that

Mr = ∑
α∈R̂

Pr(α)Eα Eα =
1

∣Ω∣ ∑r∈R
Qα(r)Mr .

The equalities now follow by definition. It may help to see Eq. (10).

Corollary 2.9. 1
∣Ω∣PQ = 1

∣Ω∣QP = Id.

P and Q are known respectively as the “first and second eigenmatrices” of the scheme.
We can see in Proposition 2.8 that the Fourier transform of f gives its expansion in the
basis of Q functions, and dually for the inverse Fourier transform in the basis of P functions.
In this sense the P and Q functions play the role of the basis of Fourier characters. It
is easy to get mixed up between P and Q. In a common matrix analysis set-up like in
Section 1, we have a matrix represented entrywise by f ∶ R → R and the goal is to compute
its spectrum/Fourier transform by analyzing f in the basis of Q-functions.

There is a natural inner product structure for which the P and Q functions are orthogonal
functions. The inner products are with respect to two counting measures, denoted ν (the
“valencies”) and µ (the “multiplicities”).

Definition 2.10 (ν and µ). Define the measures ν on R and µ on R̂ by

ν(r) = ∣{x ∈ Ω ∶ (x0, x) ∈ r}∣ µ(α) = dim(α)

where we fix any x0 ∈ Ω.

In a Schurian scheme, the measure ν is independent of the choice of x0 ∈ Ω due to
transitivity of the action of G. The total measure of the two spaces is ν(R) = µ(R̂) = ∣Ω∣.
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Equip the three spaces M ∈ RΩ×Ω, f ∶ R → R and h ∶ R̂ → R with inner products:

⟨M,N⟩ ∶= tr(MN) = ∑
x,y∈Ω

M[x, y]N[x, y]

E
r∼ν

f(r)g(r) ∶= 1

∣Ω∣ ∑r∈R
ν(r)f(r)g(r)

⟨h, i⟩µ ∶= ∑
α∈R̂

µ(α)h(α)i(α)

The first inner product on the matrix space is the Frobenius (or entrywise) inner product,
which is induced by the uniform measure on Ω×Ω. The other inner products are in fact the
same inner product for the different representations of the scheme. This result generalizes
the Plancherel theorem in Fourier analysis.

Proposition 2.11. For matricesM,N ∈ RΩ×Ω with entries f, g ∶ R → R, we have 1
∣Ω∣2 ⟨M,N⟩ =

Er∼ν f(r)g(r) = ⟨f̂ , ĝ⟩µ.

Proof. The first equality is:

1

∣Ω∣2
⟨M,N⟩ = 1

∣Ω∣2 ∑x,y∈Ω
M[x, y]N[x, y] = 1

∣Ω∣ ∑r∈R
ν(r)f(r)g(r) = E

r∼ν
f(r)g(r) .

For the second equality: start from 1
∣Ω∣2 ⟨M,N⟩ = 1

∣Ω∣2 tr(MN). The trace is invariant under
change of basis. Changing to an eigenbasis in which both M and N are diagonal, we have
1
∣Ω∣2 tr(MN) = ∑α∈R̂ µ(α)f̂(α)ĝ(α) = ⟨f̂ , ĝ⟩µ.

We derive that the P and Q functions are orthogonal under ⟨⋅, ⋅⟩µ and Er∼ν .

Proposition 2.12.

⟨Pr, Ps⟩µ = ⟨Mr,Ms⟩ =
⎧⎪⎪⎨⎪⎪⎩

∣Ω∣ν(r) r = s
0 r ≠ s

E
r∼ν

Qα(r)Qβ(r) = ⟨Eα,Eβ⟩ =
⎧⎪⎪⎨⎪⎪⎩

µ(α) α = β
0 α ≠ β

Proof. ⟨Pr, Ps⟩µ = ⟨Mr,Ms⟩ and Er∼ν Qα(r)Qβ(r) = ⟨Eα,Eβ⟩ by the Plancherel theorem.
The second equalities are direct computation.

Corollary 2.13. f̂(α) = 1
µ(α) Er∼ν f(r)Qα(r) and h̃(r) = 1

ν(r)⟨h,Pr⟩µ

Proof. In Proposition 2.8, take the inner product between f and Qα or between h and Pr.
Then use the orthogonality relations in Proposition 2.12.

A “polynomial scheme” is one where the P and Q functions are univariate polynomials
(with respect to P1 andQ1 for some ordering ofR and R̂). In a polynomial scheme, the P and
Q functions are orthogonal polynomials for the measures µ and ν and hence additional tools
can be borrowed from the theory of orthogonal polynomials. Many of the most important
examples are polynomial schemes, including the Hamming and Johnson schemes.
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2.4 Product structure of an association scheme

So far, we have studied the linear algebraic structure of an association scheme, identify-
ing two natural bases Mr and Eα. The scheme has additional algebraic structure coming
from product operations. There are two distinct products: matrix multiplication and the
Hadamard product (a.k.a. entrywise product), denoted M ⊙N. The Bose–Mesner algebra
is closed under these products since Mi ⊙Mj = 1i=jMi and EiEj = 1i=jEi.

Definition 2.14. Define pkij ∈ R (the “intersection numbers”) and qkij ∈ R (the “Krein pa-

rameters”) to be the values such that MiMj = ∑k∈R p
k
ijMk and Ei ⊙Ej = 1

∣Ω∣ ∑k∈R̂ q
k
ijEk.

Proposition 2.15. pkij ∈ Z and qkij ∈ R. Furthermore, 0 ≤ pkij ≤ ∣Ω∣ and 0 ≤ qkij ≤ ∣Ω∣.

Proof. The facts on pkij follow from pkij = ∣{y ∈ Ω ∶ (x, y) ∈ ri, (y, z) ∈ rj}∣ in Definition 2.1.

The qkij are the eigenvalues of the matrix Ei ⊙Ej scaled up by ∣Ω∣. We can bound them
using a trick, which is that the Kronecker product Ei ⊗Ej contains Ei ⊙Ej as a principal
submatrix. The eigenvalues of Ei and Ej are either 0 or 1 and therefore all of the eigenvalues
of Ei ⊗Ej are also either 0 or 1. From this and the trick we get a bound on the quadratic
form achieved by any unit vector v ∈ RΩ:

0 ≤ min
w∈RΩ2

∥w∥2=1

w⊺(Ei ⊗Ej)w ≤ v⊺(Ei ⊙Ej)v ≤ max
w∈RΩ2

∥w∥2=1

w⊺(Ei ⊗Ej)w ≤ 1 .

Matrix multiplication and Hadamard product correspond to convolution and pointwise
product on the space of functions f ∶ R → R, respectively. Because of this, we can compute
products in either the function space or matrix space, whichever is more convenient, freely
moving back and forth during the analysis. Functions in the dual space have a distinct
notion of “dual convolution”.

Definition 2.16 (Convolution and dual convolution). Let M,N ∈ RΩ×Ω be represented by
f, g ∶ R → R and dually represented by h, i ∶ R̂ → R. Define the convolution f ∗ g ∶ R → R and
the dual convolution h⍟ i ∶ R̂ → R by

(f ∗ g)(r) = 1

∣Ω∣
⋅ (r entries of MN)

(h⍟ i)(α) = eigenvalue of M⊙N on the α eigenspace

Proposition 2.17.

PiPj = ∑
k∈R

pkijPk Pi ⍟ Pj = 1i=jPi

QiQj = ∑
k∈R̂

qkijQk Qi ∗Qj = 1i=jQi

Proof. In the top line, the first equation can be interpreted as computing the eigenvalues on
both sides of the equation MiMj = ∑k∈R p

k
ijMk. The second equation can be interpreted as

computing the eigenvalues of Mi ⊙Mj = 1i=jMi.
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In the bottom line, the first equation can be interpreted as computing the entries on both
sides of the equation Ei ⊙ Ej = 1

∣Ω∣ ∑k∈R̂ q
k
ijEk. The second equation can be interpreted as

computing the entries of EiEj = 1i=jEi.

The convolution theorem states that the Fourier transform converts convolution in one
domain to multiplication in the other domain.

Proposition 2.18. f̂ ∗ g = f̂ ⋅ ĝ and h̃⍟ i = h̃ ⋅ ĩ.

Proof. Let M,N ∈ RΩ×Ω be the matrices represented by f and g, and dually represented by
h and i. Then f ∗g represents entrywise the matrix 1

∣Ω∣MN. The first equality computes the
eigenvalues of this matrix product.

In the second equality, both sides compute the entries of M⊙N.

The final proposition is an explicit convolution formula.

Proposition 2.19. (f ∗ g)(k) = 1
∣Ω∣ ∑i,j∈R p

k
ijf(i)g(j) and (h⍟ i)(γ) = ∑α,β∈R̂ q

γ
αβh(α)i(β)

Proof. Let M,N ∈ RΩ×Ω be the matrices represented by f and g, and dually represented by
h and i. Then:

MN = (∑
i∈R

f(i)Mi)(∑
j∈R

g(j)Mj)

= ∑
i,j∈R

f(i)g(j) ∑
k∈R

pkijMk (Definition 2.14)

= ∑
k∈R
( ∑
i,j∈R

pkijf(i)g(j))Mk .

The formula for f ∗ g is the interpretation of this equality entrywise. Dually,

M⊙N =
⎛
⎝∑
α∈R̂

h(α)Eα

⎞
⎠
⊙
⎛
⎝∑
β∈R̂

i(β)Eβ

⎞
⎠

= ∑
α,β∈R̂

h(α)i(β) ∑
γ∈R̂

qγαβEγ (Definition 2.14)

= ∑
γ∈R̂

⎛
⎝ ∑
α,β∈R̂

qγαβh(α)i(β)
⎞
⎠
Eγ .

The formula for h⍟ i interprets the eigenvalues of both sides.

2.5 More about P and Q

We have been discussing the P and Q functions as if they are two distinct families of
functions, but in fact they are quite nearly the same. Both are rescalings of the same
bivariate function which we denote by K (for “kernel”).
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Definition 2.20. Define K ∶ R × R̂ → R by K(r,α) = ⟨Mr,Eα⟩. Also define the matrix
K ∈ RR×R̂ by K[r,α] =K(r,α).

The following equation is sometimes called the “reciprocity formula” for P and Q.

Proposition 2.21. K(r,α) = µ(α)Pr(α) = ν(r)Qα(r)

Proof. For the first equality,

K(r,α) = ⟨Mr,Eα⟩ = Pr(α)⟨Eα,Eα⟩ = µ(α)Pr(α) .

For the second equality, both K(r,α) = ⟨Mr,Eα⟩ and ν(r)Qα(r) sum the elements of Eα in
relation r.

Corollary 2.22. K = P⊺Dµ = DνQ where Dν and Dµ are diagonal matrices containing
the values of ν and µ respectively.

Suppose that we fix any orthogonal matrix Σ ∈ RΩ×Ω whose columns are a basis of
eigenvectors for the scheme. For a matrix M in the scheme, conjugation by Σ diagonalizes
the matrix (M̂ ∶= Σ⊺MΣ) so we interpret conjugation by Σ as the matrix version of the
Fourier transform, and conjugation by Σ⊺ as the inverse Fourier transform.

One way to calculate P , Q, K for a scheme is to symmetrize Σ as follows.

Proposition 2.23.

P[α, r] = ∑
(x,y)∈r

Σ[x, j0]Σ[y, j0] Q[r,α] = ∣Ω∣ ∑
j∈c(α)

Σ[x0, j]Σ[y0, j]

K[r,α] = ∑
(x,y)∈r

∑
j∈c(α)

Σ[x, j]Σ[y, j]

where c(α) ⊆ Ω denotes the columns of Σ spanning the α eigenspace, and we fix any
(x0, y0) ∈ r and any j0 ∈ c(α).

Proof. Let Πj ∈ RΩ×Ω be the projection matrix to the jth eigenvector, which has entries
Πj[x, y] =Σ[x, j]Σ[y, j]. Fix any (x0, y0) ∈ r and j0 ∈ c(α). Then:

K[r,α] = ⟨Mr,Eα⟩ = ∑
j∈c(α)

⟨Mr,Πj⟩ = ∑
(x,y)∈r

∑
j∈c(α)

Σ[x, j]Σ[y, j]

Pr(α) = ⟨Mr,Πj0⟩ = ∑
(x,y)∈r

Σ[x, j0]Σ[y, j0]

Qα(r) = ∣Ω∣Eα[x0, y0] = ∣Ω∣ ∑
j∈c(α)

Πj[x0, y0] = ∣Ω∣ ∑
j∈c(α)

Σ[x0, j]Σ[y0, j] .

Finally, we compute a few values of the P and Q functions. Let 0 ∈ R denote the
identity relation (which is always a relation by assumption). Let 0 ∈ R̂ denote the eigenspace
containing the vector 1⃗ (which is always an eigenvector—for Schurian schemes, this is due
to transitivity of the G action).

13



Proposition 2.24. µ(0) = 1 ν(0) = 1

P0(α) = 1 Q0(r) = 1 Pr(0) = ν(r) Qα(0) = µ(α)

Proof. To show µ(0) = 1, we claim E0 = 1
∣Ω∣J where J ∈ RΩ×Ω is the all-1s matrix. Since J is

in the scheme it can be expressed in the Eα basis as J = ∑α∈R̂ cαEα. For any α ≠ 0,

cα =
⟨J,Eα⟩
⟨Eα,Eα⟩

(Orthogonality of Eα under the Frobenius inner product)

= 1⃗⊺Eα1⃗

µ(α)
= 0 . (Eigenspace α ⊥ eigenspace containing 1⃗)

This shows that E0 is a scalar multiple of J and so this eigenspace has dimension 1.

The remaining claims are easy. ν(0) = 1 is evident.

P0(α) = eigenvalue of Id on the α eigenspace = 1

Pr(0) = eigenvalue of Mr on the eigenspace containing 1⃗ = 1

∣Ω∣
1⃗⊺Mr1⃗ = ν(r) .

Then Qα(0) = µ(α) and Q0(r) = 1 by reciprocity (Proposition 2.21).

2.6 Connection to Gelfand pairs and spherical functions

Definition 2.25 (Gelfand pair). A pair of finite groups (H,K) with H ≥ K is a Gelfand
pair if L2(H/K) is multiplicity-free as an H-representation i.e. it decomposes into a direct
sum of distinct irreducible representations of H.

H/K denotes the collection of left cosets hK. The action of H on f ∈ L2(H/K) is a left
action by (h1 ⋅ f)(h2K) ∶= f(h1h2K).

We show that finite Gelfand pairs correspond to commutative Schurian association schemes
and vice versa. For example, (Sn, Sk × Sn−k) corresponds to the Johnson scheme J(n, k).
Proposition 2.26. Let group G act transitively on a finite set Ω such that the Schurian
association scheme (Ω,R) is commutative. Let x0 ∈ Ω be arbitrary. Then (G,Gx0) is a
Gelfand pair where Gx0 is the stabilizer subgroup of x0.

Conversely, let (H,K) be a finite Gelfand pair. Let Ω = H/K. Then the action of H on
Ω yields a commutative Schurian association scheme.

Proof. SinceH,K are finite we have L2(H/K) ≅ RH/K . By Schur’s lemma, RH/K is multiplic-
ity free as anH-representation if and only if the space ofH-invariant mapsM ∶ RH/K → RH/K

is commutative. This shows the second direction. For the first direction, in a Schurian asso-
ciation scheme, by the orbit-stabilizer relation Ω is in correspondence with the cosets G/Gx0

so the association scheme exactly consists of G-invariant maps M ∶ RG/Gx0 → RG/Gx0 .
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A Gelfand pair (H,K) can be used to study the following objects: (1) K-invariant func-
tions f ∶H/K → R which are what we have been calling “spherical functions”, (2)H-invariant
matrices/linear operators M ∶ (H/K) × (H/K) → R which correspond to the Bose–Mesner
algebra of an association scheme, or (3) the “Hecke algebra” of K-bi-invariant functions
f ∶ H → R which satisfy f(h) = f(k1hk2) for all k1, k2 ∈ K. These three types of objects are
unsymmetrized in the sense that multiple entries will be equal due to symmetry under the
group action; the symmetry-reduced objects in a Gelfand pair are f ∶ K/H/K → R where
the domain consists of double cosets of the form KhK (these can be shown to partition H).

For example, (O(n),O(n − 1)) are an infinite Gelfand pair. The space of spherical func-
tions consists of f ∶ Sn−1 → R such that f(x) only depends on the angle/distance from some
fixed pole x0 ∈ Sn−1 (historically this motivated the term “spherical function”). The spherical
functions for the Gelfand pair (Rn ⋊O(n),O(n)) are the radial functions f ∶ Rn → R.

To summarize the discussion on spherical functions, we obtain a generalized Fourier
transform for f ∶ Ω → R when Ω is not necessarily a group but has a group acting on
it, in special settings where there is a “Fourier basis” (the convolution operators can be
simultaneously diagonalized) which can occur even if the acting group is non-abelian.
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