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Abstract

Determining the maximum size A2(n, d) of a binary code of blocklength n and distance d
remains an elusive open question even when restricted to the important class of linear codes.
Recently, two linear programming hierarchies extending Delsarte’s LP were independently
proposed to upper bound ALin

2 (n, d) (the analogue of A2(n, d) for linear codes). One of these
hierarchies, by the authors, was shown to be approximately complete in the sense that the hierar-
chy converges to ALin

2 (n, d) as the level grows beyond n2. Despite some structural similarities,
not even approximate completeness was known for the other hierarchy by Loyfer and Linial.

In this work, we prove that both hierarchies recover the exact value of ALin
2 (n, d) at level n.

We also prove that at this level the polytope of Loyfer and Linial is integral. Even though these
hierarchies seem less powerful than general hierarchies such as Sum-of-Squares, we show that
they have enough structure to yield exact completeness via pseudoprobabilities.
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1 Introduction

A binary code is any subset of binary strings C ⊆ Fn
2 . Two fundamental parameters of a code

are the size |C| and the minimum (Hamming) distance d between pairs of distinct codewords.
Determining the maximum size A2(n, d) of a binary code of blocklength n and distance d remains
an elusive open problem despite much effort and interest in this fundamental question [vL99,
GRS19, Val19].

When the distance is d := bδnc for some constant δ ∈ (0, 1/2), the growth of A2(n, d) is known
to be exponential in n. It is then convenient to consider the asymptotic rate R2(δ) defined as

R2(δ) := lim sup
n→∞

1
n

log2 (A2(n, bδnc)) .

Roughly speaking, the maximum size of a code grows as 2R2(δ)n up to lower order terms. However,
the precise asymptotic rate function R2(δ) remains unknown, so this exponential growth is not
fully understood.

The best lower bound on R2(δ) dates back to the work of Gilbert [Gil52] and Varshamov1

[Var57]. Their bound, known as the GV bound, follows from a simple argument for the dis-
tance versus rate trade-off of random codes. The best upper bound on R2(δ) dates back to the
work of McEliece, Rodemich, Rumsey and Welch (MRRW) [MRRW77] and it is based on linear
programming (LP) techniques. Specifically, A2(n, d) is upper bounded by the value of an LP of
Delsarte [Del73], which they upper bound by constructing a dual solution using the theory of
orthogonal polynomials.

Here, we will focus on the family of Delsarte’s LPs used in the so-called first MRRW bound2,
which is based on the so-called Krawtchouk polynomials [vL99] and MacWilliams inequalities
[Mac63, MSG72] since this family is closer to our work. The precise details of this family of LPs
are not important at this point.

Linear codes (i.e., linear subspaces) are arguably one of the most important and widely studied
classes of codes [vL99, GRS19]. We denote by ALin

2 (n, d) and RLin
2 (δ) the versions of A2(n, d) and

R2(δ), respectively, corresponding to linear codes. Even for this important class of codes, the
known lower and upper bounds for RLin

2 (δ) are the same as those for R2(δ) for general codes.

Delsarte’s linear programs are a convex relaxation for A2(n, d) and there is a known gap be-
tween the value of the LP and the GV bound [Sam01, NS05]. In other words, if the GV bound is
indeed tight, then Delsarte’s LP is not sufficient to prove it (this would be called an integrality gap
of the LP). For this reason, it is natural to look for approaches that are provably sufficient to settle
the growth of A2(n, d) while having the hope of being amenable to theoretical analysis. Note that
Delsarte’s LPs do not distinguish between general and linear codes, hence they do not provide
better bounds for ALin

2 (n, d) nor to the asymptotic rate RLin
2 (δ).

There have been attempts to improve the upper bound using stronger convex relaxations of
A2(n, d). The problem of computing A2(n, d) is equivalent to computing the independence num-
ber of a graph whose vertex set is Fn

2 and pairs of vertices are adjacent if they violate the minimum

1Varshamov showed Gilbert’s bound for general codes remains the same for linear codes.
2In [MRRW77], they also analyze (in the second MRRRW bound) another family of LPs based on the Johnson asso-

ciation scheme.
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distance constraint. In principle, one can employ general convex programming hierarchies such
as Sum-of-Squares [Lau07] or Sherali–Adams, which provably equal the true value A2(n, d) at
a sufficiently large level. Delsarte’s LP is equivalent to a convex relaxation for independent set
known as Schrijver’s ϑ′ function [Sch79, Lau07]. This is a slight strengthening of the Lovász ϑ
function [Lov79], which is equivalent to the first level of the Sum-of-Squares hierarchy for inde-
pendent set. However, analyzing these general hierarchies remains elusive; in fact it even remains
open to analyze an SDP proposed by Schrijver [Sch05], which lies between Delsarte’s LP and the
second level of the Sum-of-Squares of hierarchy. The only convex programs we know how to an-
alyze for this problem are Delsarte’s LPs, and there are now a few different techniques for this
analysis [MRRW77, FT05, NS05, NS09, Sam21].

Recently, two new convex programming hierarchies for ALin
2 (n, d) were proposed, one by

Coregliano, Jeronimo, and Jones [CJJ22] (see also [Jon22] for an alternative exposition) and another
by Loyfer and Linial [LL22] (in fact both hierarchies can be defined over general finite fields). In
this paper, we study these hierarchies further.

The two hierarchies are similar in spirit but not exactly the same. Both hierarchies are a family
of LPs (rather than SDPs) that extend Delsarte’s LP into a hierarchy of tighter and tighter convex
relaxations for ALin

2 (n, d), while retaining some structural similarities with Delsarte’s LP. Since
Delsarte’s LP is the only convex program with known theoretical analysis, there is a hope that
analyzing these two new hierarchies may be possible.

The Krawtchouk hierarchy KrawtchoukLPFq
Lin(n, d, `) of [CJJ22] was shown to be approximately

complete beyond level n2 in the following sense. The level of the hierarchy is `, where ` = 1
recovers Delsarte’s LP.

Theorem 1.1 ([CJJ22]). For ` ≥ Ωε,q(n2), we have

ALin
q (n, d) 6 val(KrawtchoukLPFq

Lin(n, d, `))1/` 6 (1 + ε) · ALin
q (n, d).

Our first result is the exact completeness at level n of the Krawtchouk hierarchy as follows.

Theorem 1.2. For ` ≥ n, we have ALin
q (n, d) = val(KrawtchoukLPFq

Lin(n, d, `))1/`.

Instead of relying on integrality of the feasible region (i.e., it is exactly the convex hull of true
solutions corresponding to linear codes) to deduce completeness as is the case for general hierar-
chies such as Sherali–Adams or Sum-of-Squares, it is only possible to show that optimum solu-
tions are integral, giving an unusual proof of completeness for a convex programming hierarchy.
We also show that the polytope of KrawtchoukLPFq

Lin(n, d, `) is never integral (see Proposition 5.1).
Nonetheless, any given non-integral solution becomes infeasible as the level grows (see Proposi-
tion 5.2).

The partial Krawtchouk hierarchy PartialKrawtchoukLPFq
Lin(n, d, `) of [LL22] is similar to the

Krawtchouk hierarchy of [CJJ22], but it has additional constraints and a different objective func-
tion (see Section 4). Due to this different objective function and the fact that the approximate com-
pleteness proof of Theorem 1.1 crucially relies on the objective function of the Krawtchouk hierar-
chy being “dense”, the proof of Theorem 1.1 did not extend to the Loyfer and Linial hierarchy. Our
proof here of Theorem 1.2 does extend to show that PartialKrawtchoukLPFq

Lin(n, d, `) is complete
at level n. More precisely, our second result is the following.
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Theorem 1.3. For ` ≥ n, we have ALin
q (n, d) = val(PartialKrawtchoukLPFq

Lin(n, d, `)).

Curiously, we show that the additional constraints of the Loyfer and Linial hierarchy make the
polytope integral for ` ≥ n (see Proposition 5.3). This integrality is not obvious from the original
formulation of the hierarchy and it relies on a new perspective uncovered by this work.

The exact completeness theorems at level n (Theorems 1.2 and 1.3) improve our understand-
ing of these hierarchies, consolidating them as provable approaches to resolve the longstanding
question of improving bounds for ALin

2 (n, d), and justifying them as natural objects in their own
right. The primary open research direction is a theoretical analysis of these hierarchies to obtain
tighter bounds on RLin

2 (δ). It is not clear which hierarchy is better suited for such a task: the
Krawtchouk hierarchy may be simpler to analyze, which is of critical importance here, but the
partial Krawtchouk hierarchy may provide tighter values at the same level given its additional
constraints.

Proof Outline. We first briefly recall the approximate completeness proof from [CJJ22]. The hi-
erarchy KrawtchoukLPFq

Lin(n, d, `) can be seen as a symmetrization of the ϑ′ of a graph from a care-
fully chosen association scheme under the actions of symbol permutation by Sn and translation
by Fn

q (see [Del73, DL98] and [CJJ22, §5] for more on association scheme theory). The approximate
completeness is then obtained via a counting argument over the unsymmetrized ϑ′ formulation,
which requires level ` > n2 to yield non-trivial bounds.

A key insight of this work is a novel third formulation of the Krawtchouk hierarchy from
which exact completeness can be obtained at level n. Instead of factoring symmetries that lead
to variables indexed by Hamming weights, we now factor different symmetries leading to vari-
ables indexed by linear subspaces. Using a linear transformation (namely, Möbius inversion of the
poset of subspaces of Fn

q ), we then rewrite the LP in terms of new variables that can interpreted as
a pseudoprobability distribution over linear codes (see Section 3). In this pseudoprobability for-
mulation, integral solutions correspond to true probability distributions and via a mass transfer
argument we show that optimum solutions are integral. An interesting feature of this third formu-
lation of the hierarchy is that the number of variables and constraints remains constant regardless
of the level (see Section 3.2). Curiously, we show (Proposition 5.1) that the polytope of this formu-
lation is not integral, i.e., there are non-optimum solutions that are not integral. As mentioned,
these ideas also generalize to show that the partial Krawtchouk hierarchy of [LL22] also has exact
completeness for ` ≥ n (see Section 4).

Bibliographic Note: A preliminary version of the completeness of the KrawtchoukLPF2
Lin(n, d, `)

hierarchy (over the binary field) is included in the dissertation of one of the authors [Jon22].

2 Preliminaries

We denote by Fq the finite field of size q (which must be a prime power). A code of blocklength
n ∈ N+ (over Fq) is a non-empty subset C ⊆ Fn

q . We denote by ∆(x, y) := |{i ∈ [n] | xi 6= yi}|
the Hamming distance between x, y ∈ Fn

q . The minimum distance of a code C is the minimum of
∆(x, y) over all distinct x, y ∈ C. The rate r(C) of C is defined as r(C) := logq(|C|)/n. We denote
by Aq(n, d) the maximum size of a code of blocklength n (over Fq) and minimum distance at least
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d. We say that C is linear if it is an Fq-linear subspace. For linear codes, we have r(C) = dimFq(C).
We denote by ALin

q (n, d) the analogue of Aq(n, d) when codes are required to be linear.

For α ∈ Fn
q , we denote by χα : Fn

q → C the (additive) Fourier character associated with α and
we denote by 1α : Fn

q → {0, 1} be the indicator function of α. If T is a vector space (over Fq), we will
use the notation S 6 T to mean that S is a subspace of T and S < T to mean that S is a proper
subspace of T.

The rest of this section is devoted to informal descriptions of the hierarchies from [CJJ22]
and [LL22] in their symmetrized form. Since all arguments of this paper start from the unsym-
metrized versions in Figs. 3 and 6 of Sections 3 and 4 to factor different symmetries, the descrip-
tions below serve only as guiding intuition and will not be used in any proof.

The hierarchy from [CJJ22] extends Delsarte’s LPs by considering not only the Hamming
weight of single codewords, but by also considering the Hamming weights of every codeword
in subspaces of dimension up to a parameter ` ∈N+, which is the level of the hierarchy. Given an
`-tuple of words (x1, . . . , x`) ∈ (Fn

q )
`, one associates a configuration function mapping c ∈ F`

q to the

Hamming weight
∣∣∣∑j∈[`] cj · xj

∣∣∣ (in the binary case, it is typical to naturally identify F`
2 with the set

2[`] of subsets of [`]). The set of functions F`
q →N that are configurations of some `-tuple of code-

words is denoted Config. If the words x1, . . . , x` belong to some linear code C of minimum distance
d, then their configuration cannot have numbers from [d− 1] := {1, . . . , d− 1} in its image. This
means that if we let ag be the number of tuples (x1, . . . , x`) in C whose configuration is g, then
ag = 0 whenever g ∈ ForbConfig := {h ∈ Config | [d− 1] ∩ im(h) 6= ∅}. It is clear that a0 = 1 for
the zero configuration (as 0 ∈ C since C is linear) and that |C|` = ∑g∈Config ag. Finally, by observing
that the Fourier transform of the indicator 1C is (up to a multiplicative constant) the indicator of the
dual code C⊥, hence a nonnegative function, one derives the so-called (higher-order) MacWilliams
inequalities based on a higher-order version of the Krawtchouk polynomials. The level ` of this
hierarchy for codes over the field Fq is denoted by KrawtchoukLPFq

Lin(n, d, `) and it is a relaxation
(i.e., an upper bound) for Aq(n, d)`. The program in Fig. 1 provides an informal description of this
hierarchy, where variables are indexed by configurations and Kh is the higher-order Krawtchouk
polynomial associated with configuration h. In this formulation, it is immediate that the first level
of this hierarchy is simply Delsarte’s LP. Since we will work with a different formulation of the hi-
erarchy (see Fig. 3 in Section 3), we point the interested reader to [CJJ22, Jon22] for a more detailed
description of this Hamming weight formulation of the hierarchy.

max ∑
g∈Config

ag

s.t. a0 = 1 (Normalization)
ag = 0 ∀g ∈ ForbConfig (Distance constraints)

∑
g∈Config

Kh(g) · ag > 0 ∀h ∈ Config (MacWilliams inequalities)

ag > 0 ∀g ∈ Config (Nonnegativity).

Figure 1: Informal description of KrawtchoukLPFq
Lin(n, d, `). Its optimum value is an upper bound

for ALin
q (n, d)`.
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As we mentioned in the introduction, Loyfer and Linial in [LL22] independently proposed
another linear programming hierarchy PartialKrawtchoukLPFq

Lin(n, d, `) for linear codes that bears
many structural similarities with the Krawtchouk hierarchy KrawtchoukLPFq

Lin(n, d, `) of [CJJ22],
but it is different in two important aspects. Firstly, PartialKrawtchoukLPFq

Lin(n, d, `) uses a dif-
ferent objective function that sums only over configurations in Config1 := {g ∈ Config | ∀c ∈
supp(g), {1} ⊆ supp(c)} (configurations in Config1 correspond to `-tuples of codewords of the
form (x1, 0, . . . , 0)); this provides an upper bound for ALin

q (n, d) (as opposed to its `th power). Sec-
ondly, by using partial Fourier transforms as well as the usual Fourier transform (see [LL22] or Sec-
tion 4 below for more details), PartialKrawtchoukLPFq

Lin(n, d, `) also has “partial MacWilliams in-
equality” constraints that are not present in KrawtchoukLPFq

Lin(n, d, `). The program in Fig. 2 pro-
vides an informal description of this hierarchy, where variables are indexed by configurations and
KS

h is the partial higher-order Krawtchouk polynomial associated with configuration h and set
S ⊆ [`].

max ∑
g∈Config1

ag

s.t. a0 = 1 (Normalization)
ag = 0 ∀g ∈ ForbConfig (Distance constraints)

∑
g∈Config

KS
h (g) · ag > 0 ∀h ∈ Config, ∀S ⊆ [`] (Partial MacWilliams inequalities)

ag > 0 ∀g ∈ Config (Nonnegativity).

Figure 2: Informal description of PartialKrawtchoukLPFq
Lin(n, d, `). Its optimum value is an upper

bound for ALin
q (n, d). The nonnegativity constraints ag > 0 are redundant as they are also obtained

as the partial MacWilliams inequalities corresponding to S = ∅. The original formulation also
enforces GL`(Fq) symmetries, but these are omitted here for simplicity.

3 Exact Completeness of the Krawtchouk LP Hierarchy

In this section, we prove the exact completeness at level n of the Krawtchouk hierarchy for
linear codes, namely, we show that ALin

q (n, d) = val(KrawtchoukLPFq
Lin(n, d, n))1/n. We first give

an alternative formulation of this hierarchy in terms of pseudoprobabilities in Section 3.1. Using
this representation, we then show the exact completeness result in Section 3.2.

3.1 A Pseudoprobability LP Formulation

We first recall the unsymmetrized formulation of the hierarchy from [CJJ22] given in Fig. 3;
it corresponds to the ϑ′ formulation of the Krawtchouk hierarchy expressed in “diagonalized”
form using the Fourier basis. Here, we use this unsymmetrized formulation as our starting point.
The interested reader is referred to [CJJ22] for more details about the connection between these
equivalent formulations of the hierarchy.
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Variables: ax x ∈ (Fn
q )

`

max ∑
x∈(Fn

q )`
ax

s.t. a0 = 1 (Normalization)
a(x1,...,x`) = 0 ∃w ∈ span(x1, . . . , x`). |w| ∈ [d− 1] (Distance constraints)

∑
x∈(Fn

q )`
axχα(x) ≥ 0 ∀α ∈ (Fn

q )
` (Fourier coefficients)

ax = a−x ∀x ∈ (Fn
q )

` (Reflection)

ax > 0 ∀x ∈ (Fn
q )

` (Nonnegativity).

Figure 3: Unsymmetrized higher-order Krawtchouk hierarchy KrawtchoukLPFq
Lin(n, d, `) for

Aq(n, d).

To each linear code C ≤ Fn
q , we have a corresponding true solution aC given by

aCx := 1[∀j ∈ [`], xj ∈ C],

whose value is |C|`. Note that aC is feasible for the program in Fig. 3 if and only if C has minimum
distance at least d.

On the other hand, the program in Fig. 3 is invariant under the natural basis change action of
the general linear group GL`(Fq); this means that by symmetrizing a solution a under such action,
we may assume that ax = ay whenever span(x) = span(y); after such symmetrization, we can
denote by aS (S ≤ Fn

q ) the value of ax for any x ∈ (Fn
q )

` such that span(x) = S. Note that the true
solutions aC corresponding to linear codes C ≤ Fn

q are already symmetrized:

aCx = 1[span(x) ⊆ C] =: aCspan(x). (1)

Equation (1) above suggests that we should interpret the variables aS as the relaxation of the
indicator 1S⊆C for a code C; or more precisely as aS = P̃[S ⊆ C̃], where C̃ is a formal variable that
represents a code drawn from a pseudodistribution of linear codes.

The next lemma uses Möbius inversion to provide a linear transformation into variables of
the form P̃[S = C̃] and shows that (symmetrized) integral solutions are precisely those in which
P̃[S = C̃] (S ≤ Fn

q ) is a (true) probability distribution (recall that a solution a is integral if it is a
convex combination of true solutions aC).

Lemma 3.1. For every S ≤ Fn
q , let P̃[S ⊆ C̃], P̃[S = C̃] ∈ R be real numbers. Then the following

are equivalent.

i. For every S ≤ Fn
q , we have P̃[S ⊆ C̃] = ∑S≤T≤Fn

q
P̃[T = C̃].

ii. For every S ≤ Fn
q , we have P̃[S = C̃] = ∑S≤T≤Fn

q
µ(S, T) P̃[T ⊆ C̃], where µ is the Möbius

function of the poset of subspaces of Fn
q under inclusion.
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Furthermore, if P̃[S ⊆ C̃], P̃[S = C̃] (S ≤ Fn
q ) satisfy the above, then for every S ≤ Fn

q , we have

P̃[S ⊆ C̃] = ∑
T≤Fn

q

P̃[T = C̃] · aT
S .

In particular, the solution aS := P̃[S ⊆ C̃] (S ≤ Fn
q ) is integral if and only if P̃[S = C̃] (S ≤ Fn

q ) is a
probability distribution.

Proof. Recall that the Möbius function µ is inductively defined3 by

µ(S, T) :=


1, if S = T,

− ∑
S6U<T

µ(S, U), if S < T,

0, if S 6≤ T,

which in particular means that we have ∑S≤U≤T µ(S, U) = ∑S≤U≤T µ(U, T) = 1[S = T] for every
S ≤ T ≤ Fn

q .

For the implication (i)⇒(ii), note that for every S ≤ Fn
q , we have

∑
S≤T≤Fn

q

µ(S, T) P̃[T ⊆ C̃] = ∑
S≤T≤Fn

q

µ(S, T) ∑
T≤U≤Fn

q

P̃[U = C̃]

= ∑
S≤U≤Fn

q

P̃[U = C̃] ∑
S≤T≤U

µ(S, T) = P̃[S = C̃].

For the implication (ii)⇒(i), note that for every S ≤ Fn
q , we have

∑
S≤T≤Fn

q

P̃[T = C̃] = ∑
S≤T≤Fn

q

∑
T≤U≤Fn

q

µ(T, U) P̃[U ⊆ C̃]

= ∑
S≤U≤Fn

q

P̃[U ⊆ C̃] ∑
S≤T≤U

µ(T, U) = P̃[S ⊆ C̃].

For the second assertion, since aCS = 1[S ⊆ C], from (i), we have

P̃[S ⊆ C̃] = ∑
T≤Fn

q

P̃[T = C̃] · 1[S ≤ T] = ∑
T≤Fn

q

P̃[T = C̃] · aT
S ,

that is, the solution P̃[ · ⊆ C̃] is written as the linear combination

P̃[ · ⊆ C̃] = ∑
T≤Fn

q

P̃[T = C̃] · aT

of the true solutions aT; this linear combination is a convex combination precisely when P̃[T =

C̃] ≥ 0 for every T ≤ Fn
q and ∑T≤Fn

q
P̃[T = C̃] = 1. �

The idea of the proof of completeness is to rewrite the linear program in terms of the variables
P̃[S = C̃] and then argue about the program from the perspective of the pseudoprobabilities. For
simplicity, let us now shorten the notation to P̃[S] := P̃[S = C̃].

3In fact, one can show that µ(S, T) = (−1)dim(T/S)q(
dim(T/S)

2 ) when S ≤ T (and 0 when S 6≤ T), but we will not need
this explicit formula.
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Variables: P̃[S] S 6 Fn
q

max ∑
S≤Fn

q

|S|` P̃[S]

s.t. ∑
S6Fn

q

P̃[S] = 1 (Normalization)

P̃[S] = 0 ∃w ∈ S. |w| ∈ [d− 1] (Distance Constraints)

∑
S6U
|S|` P̃[S] > 0 ∀U 6 Fn

q (Fourier coefficients)

∑
S>U

P̃[S] > 0 ∀U 6 Fn
q (Nonnegativity).

Figure 4: KrawtchoukLPFq
Lin(n, d, `) in terms of pseudoprobabilities for ` > n.

Lemma 3.2. If a is a GL`(Fq)-invariant solution of the program KrawtchoukLPFq
Lin(n, d, `) in Fig. 3

and P̃[span(x) ⊆ C̃] := ax for every x ∈ (Fn
q )

`, then P̃[S = C̃] given by Lemma 3.1(ii) is a solution
of the program in Fig. 4 with the same value.

Conversely, if P̃[S = C̃] is a solution of the program in Fig. 4, then setting ax := P̃[span(x) ⊆ C̃]
via Lemma 3.1(i) gives a solution of KrawtchoukLPFq

Lin(n, d, `) with the same value.

Proof. We rewrite the (GL`(Fq)-symmetrization of) the program KrawtchoukLPFq
Lin(n, d, `) in Fig. 3

in terms of the variables P̃[S] obtained from P̃[S ⊆ C̃] := aS via Lemma 3.1.

The rewritten objective function is

∑
x∈(Fn

q )
`

P̃[span(x) ⊆ C̃] = ∑
x∈(Fn

q )
`

∑
span(x)≤T≤Fn

q

P̃[T] = ∑
S6Fn

q

|S|` P̃[S].

The left-hand side of the distance constraint for S ≤ Fn
q such that there exists w ∈ S with

|w| ∈ [d− 1] is

P̃[S ⊆ C̃] = ∑
T>S

P̃[T]

By induction downwards on the dimension of S, requiring the above to be equal to 0 is equivalent
to the constraints

P̃[S] = 0 (S 6 Fn
q : ∃w ∈ S. |w| ∈ [d− 1]).

The left-hand side of the Fourier constraint for α is

∑
x∈(Fn

q )
`

P̃[span(x) ⊆ C̃]χα(x) = ∑
x∈(Fn

q )
`

χα(x) ∑
span(x)≤T≤Fn

q

P̃[T] = ∑
S6Fn

q

P̃[S] ∑
x∈S`

χα(x).

Let us now show the following claim.
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Claim 3.3. For α ∈ (Fn
q )

`, S 6 Fn
q , we have

∑
x∈S`

χα(x) =

{
|S|`, if S ≤ span(α)⊥,
0, otherwise.

Proof of Claim 3.3. If S ≤ span(α)⊥, then all terms of the sum are 1, so the result follows. On the
other hand, if S 6≤ span(α)⊥, then there exist y ∈ S and β ∈ span(α) such that χβ(y) 6= 1. Write
β = ∑j∈[`] cj · αj for cj ∈ Fq and let z ∈ S` be given by zj := cj · y (j ∈ [`]). Then we have

∑
x∈S`

χα(x) = ∑
x∈S`

χα(x + z) = χα(z) · ∑
x∈S`

χα(x) = χβ(y) · ∑
x∈S`

χα(x),

and since χβ(y) 6= 1, we conclude that ∑x∈S` χα(x) = 0. �

From Claim 3.3 above, it follows that the Fourier constraint for α is equivalent to

∑
S6span(α)⊥

|S|` P̃[S] > 0,

concluding the proof. �

It will also be convenient to consider a weakening of this formulation that is more amenable
to analysis. Let k0 := logq(ALin

q (n, d)) be the maximum dimension of a linear code of minimum
distance at least d. The program of Fig. 5 below is obtained from that of Fig. 4 by replacing the
distance constraints with the following “dimension constraints”.

a(x1,...,x`) = 0 if dim(span(x1, . . . , x`)) > k0 (Dimension constraints)

Variables: P̃[S] S 6 Fn
q

max ∑
S≤Fn

q

|S|` P̃[S]

s.t. ∑
S6Fn

q

P̃[S] = 1 (Normalization)

P̃[S] = 0 if dim(S) > k0 (Dimension constraints)

∑
S6U
|S|` P̃[S] > 0 ∀U 6 Fn

q (Fourier coefficients)

∑
S>U

P̃[S] > 0 ∀U 6 Fn
q (Nonnegativity).

Figure 5: KrawtchoukLPFq
Lin(n, d, `), weakened to dimension constraints, in terms of pseudoprob-

abilities for ` > n.

Lemma 3.4. The program in Fig. 5 is a relaxation of KrawtchoukLPFq
Lin(n, d, `).

9



Proof. Since k0 := logq(ALin
q (n, d)), any subspace of dimension larger than k0 must have minimum

distance less than d, so the distance constraints imply the dimension constraints. Thus, the result
follows. �

From Lemmas 3.2 and 3.4, to show exact completeness of KrawtchoukLPFq
Lin(n, d, `), it suffices

to show that the weakened program of Fig. 5 has optimum value ALin
q (n, d)`. The advantage of

working with the formulations that use the variables P̃[S] is that the Fourier constraints no longer
have sign alternations. However, the challenge is now to show that optimum solutions must force
P̃[S] to take nonnegative values.

3.2 Exact Completeness Proof

Before we start the proof, note that by level n there is a variable for each possible basis of
a subspace of Fn

q , which means that just writing down the distance constraints of the program

KrawtchoukLPFq
Lin(n, d, n) allows one to deduce the true value of ALin

q (n, d). However, the LP
hierarchy does not know how to use this kind of reasoning, hence our proof of completeness
is more involved. On the other hand, a feature of this subspace formulation of the hierarchy is
that the number of variables and constraints remains constant regardless of the level ` (as long as
` > n).

Note that we do not show that the polytope is integral, meaning that feasible solutions are
integral (i.e., convex combinations of true solutions). In fact, we will see in Proposition 5.1 that the
polytope is not integral when k0 > 2.

We now restate and prove our main result.

Theorem 3.5. For ` ≥ n, we have ALin
q (n, d) = val(KrawtchoukLPFq

Lin(n, d, `))1/`. More precisely,

every GL`(Fq)-invariant optimum solution of KrawtchoukLPFq
Lin(n, d, `) is integral.

Proof of Theorem 3.5. Since the program KrawtchoukLPFq
Lin(n, d, `) is GL`(Fq)-invariant, the first as-

sertion follows from the second assertion.

An immediate consequence of Lemmas 3.1 and 3.2 is that to show integrality of GL`(Fq)-

invariant optimum solutions of KrawtchoukLPFq
Lin(n, d, `), it is sufficient to prove that every opti-

mum solution P̃[S] (S ≤ Fn
q ) of the program in Fig. 4 is a probability distribution.

Now we claim that it is sufficient to prove that every optimum solution of the program in Fig. 5
is a probability distribution. Indeed, if this is the case, then the optimum value of both programs
in Figs. 4 and 5 must be |Fq|k0·` = ALin

q (n, d)`, since the definition of k0 implies that there must
be at least one true solution corresponding to a code C of dimension k0 and minimum distance at
least d. In particular, every optimum solution of the former program must also be an optimum
solution of the latter, hence a probability distribution.

Let us then show that an optimum solution P̃ of the program Fig. 5 is a probability distribu-
tion. Since ∑S≤Fn

q
P̃[S] = 1 already follows from the normalization constraint, we only have to

show that P̃ is nonnegative.

10



If S is a space in the support of P̃ of minimum dimension, then P̃[S] > 0 by the Fourier
constraint on S. Thus, to show that P̃ is nonnegative, it suffices to show that every such space of
minimum dimension has dimension exactly k0 (note that spaces of dimension larger than k0 are
not in the support of P̃ due to the dimension constraints). To that end, let Smin be a subspace of
minimum dimension in the support of P̃, assume for the sake of contradiction that dim(Smin) < k0
and let us show that there is a way to increase the objective value of P̃. Indeed, we construct
another solution P̃+ by transferring the probability mass from Smin and dividing it equally among
the S > Smin with dim(S) = dim(Smin) + 1. Formally, letting S := {S > Smin : dim(S) =
dim(Smin) + 1} and m := |S| be the number of such spaces, we define:

P̃+[S] :=


0, if S = Smin,

P̃[S] +
P̃[Smin]

m
, if S > Smin and dim(S) = dim(Smin) + 1,

P̃[S], otherwise.

Let us verify that P̃+ remains a feasible solution.

- P̃+ respects the normalization ∑S6Fn
q

P̃+[S] = 1.

- The dimension constraints are not violated since dim(S) = dim(Smin)+ 1 6 k0 for the spaces
S ∈ S in the second case above.

- In Fourier constraints with U 6> Smin, nothing changes. In the ones with U = Smin, the left-
hand side is 0. Finally, when U > Smin, U contains at least one of the subspaces S ∈ S with
increased mass. Therefore the change in the left-hand side is at least

|S|` · P̃[Smin]

m
− |Smin|` · P̃[Smin] .

Since m 6
∣∣Fq
∣∣n while |S|`

|Smin|`
=
∣∣Fq
∣∣` > ∣∣Fq

∣∣n, this is nonnegative.

- In the nonnegativity constraints, if U is not below any space in S , then nothing changes. If
U is below Smin, then the sum in the nonnegativity constraint is unchanged since all S ∈ S
appear in the sum. Finally, if U ∈ S , then the sum increased by P̃[Smin]/m.

Finally, note that objective value of the new solution P̃+[S] is

∑
S≤Fn

q

|S|` P̃+[S] = ∑
S≤Fn

q

|S|` P̃[S] + |Smin|`
(∣∣Fq

∣∣` − 1
)

P̃[Smin],

which is strictly larger than the previous objective value since P̃[Smin] > 0, a contradiction.

Therefore, P̃ must be supported only on spaces of dimension exactly k0, it is nonnegative and
integral, and the proof is complete. �
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4 Exact Completeness of the Partial Krawtchouk LP Hierarchy

The hierarchy from [LL22] differs from the one in the previous section in two ways. Firstly,
besides the Fourier constraints, it includes the following partial Fourier constraints:

∑
x∈(Fn

q )
`

axθα(x) ≥ 0 ∀α ∈ (Fn
q )

`, θα := θα1 ⊗ · · · ⊗ θα` , θαi ∈ {χαi , 1αi} (Partial Fourier)

In the expression above, 1αi : Fn
q → Fn

q is the indicator function of αi. Secondly, its objective
function is slightly different, meant to be a relaxation for the value Aq(n, d) rather than Aq(n, d)`.

We denote by PartialKrawtchoukLPFq
Lin(n, d, `) the level ` of the partial Krawtchouk hierarchy

for Aq(n, d) from [LL22]. An unsymmetrized version of this hierarchy is presented in Fig. 6. The
exact description of the hierarchy factors GL`(Fq) and Sn symmetries (see also Fig. 2).

Variables: ax x ∈ (Fn
q )

`

max ∑
x1∈Fn

q

a(x1,0,...,0)

s.t. a0 = 1 (Normalization)
a(x1,...,x`) = 0 ∃w ∈ span(x1, . . . , x`). |w| ∈ [d− 1] (Distance constraints)

∑
x∈(Fn

q )`
axθα(x) ≥ 0 ∀α ∈ (Fn

q )
`, θα := θα1 ⊗ · · · ⊗ θα` , θαi ∈ {χαi , 1αi} (Partial Fourier)

ax = ay ∀x, y ∈ (Fn
q )

`, span(x) = span(y) (GL`(Fq)-symmetries)

ax > 0 ∀x ∈ (Fn
q )

` (Nonnegativity).

Figure 6: Unsymmetrized partial Krawtchouk hierarchy PartialKrawtchoukLPFq
Lin(n, d, `).

To show exact completeness of the partial Krawtchouk hierarchy, we will first give an alterna-
tive description in terms of pseudoprobabilities in a similar way as done for the Krawtchouk hier-
archy in Section 3.1. It is enough to show exact completeness for the following weakening given
in Fig. 6, where only full Fourier constraints are included. Note that FullKrawtchoukLPFq

Lin(n, d, `)
is the same as hierarchy of Fig. 3 from Section 3 with a different objective function.

4.1 A Pseudoprobability LP Formulation

Similarly to Section 3.1, we will show that the program in Fig. 8 is a reformulation of the
weakening of the partial Krawtchouk hierarchy FullKrawtchoukLPFq

Lin(n, d, `).

Lemma 4.1. If a is a GL`(Fq)-invariant solution of FullKrawtchoukLPFq
Lin(n, d, `) from Fig. 7 and

P̃[span(x) ⊆ C̃] := ax for every x ∈ (Fn
q )

`, then P̃[S = C̃] given by Lemma 3.1(ii) is a solution of
the program in Fig. 8 with the same value.
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Variables: ax x ∈ (Fn
q )

`

max ∑
x1∈Fn

q

a(x1,0,...,0)

s.t. a0 = 1 (Normalization)
a(x1,...,x`) = 0 ∃w ∈ span(x1, . . . , x`). |w| ∈ [d− 1] (Distance constraints)

∑
x∈(Fn

q )`
axχα(x) ≥ 0 ∀α ∈ (Fn

q )
` (Full Fourier)

ax = ay ∀x, y ∈ (Fn
q )

`, span(x) = span(y) (GL`(Fq)-symmetries)

ax > 0 ∀x ∈ (Fn
q )

` (Nonnegativity).

Figure 7: Unsymmetrized partial Krawtchouk hierarchy FullKrawtchoukLPFq
Lin(n, d, `), weakened

to only full Fourier constraints.

Variables: P̃[S] S 6 Fn
q

max ∑
S≤Fn

q

|S| P̃[S]

s.t. ∑
S6Fn

q

P̃[S] = 1 (Normalization)

P̃[S] = 0 if dim(S) > k0 (Dimension constraints)

∑
S6U
|S|` P̃[S] > 0 ∀U 6 Fn

q (Fourier coefficients)

∑
S>U

P̃[S] > 0 ∀U 6 Fn
q (Nonnegativity).

Figure 8: FullKrawtchoukLPFq
Lin(n, d, `), weakened to dimension constraints and with only the full

Fourier constraints, in terms of pseudoprobabilities for ` > n.

Conversely, if P̃[S = C̃] is a solution of the program in Fig. 8, then setting ax := P̃[span(x) ⊆ C̃]
via Lemma 3.1(i) gives a solution of FullKrawtchoukLPFq

Lin(n, d, `) with the same value.

Proof. Since the program of Fig. 6 is the same as the program of Fig. 3 except for the objective func-
tion, the proof is the same as that of Lemma 3.2 only differing in the objective function analysis.
But note that the rewritten objective function is

∑
x=(x1,0,...,0):x1∈Fn

q

P̃[span(x) ⊆ C̃] = ∑
x=(x1,0,...,0):x1∈Fn

q

∑
span(x)≤T≤Fn

q

P̃[T] = ∑
S≤Fn

q

|S| P̃[S],

concluding the proof. �

For the exact completeness, it will be sufficient to consider the above weakened pseudoprob-
ability formulation of Lemma 4.1. However, to cover some integrality properties of Section 5, it
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will also be useful to give a pseudoprobability formulation of PartialKrawtchoukLPFq
Lin(n, d, `) that

includes all partial Fourier constraints.

Variables: P̃[S] S 6 Fn
q

max ∑
S≤Fn

q

|S| P̃[S]

s.t. ∑
S6Fn

q

P̃[S] = 1 (Normalization)

P̃[S] = 0 ∃w ∈ S. |w| ∈ [d− 1] (Distance Constraints)

∑
T6S6U

|S|r P̃[S] > 0 ∀T ≤ U 6 Fn
q : n−dim(U)≤r≤`,

dim(T)≤`−r (Partial Fourier coefficients)

∑
S>U

P̃[S] > 0 ∀U 6 Fn
q (Nonnegativity).

Figure 9: KrawtchoukLPFq
Lin(n, d, `) in terms of pseudoprobabilities for ` > n.

Lemma 4.2. If a is a GL`(Fq)-invariant solution of the program PartialKrawtchoukLPFq
Lin(n, d, `)

in Fig. 6 and P̃[span(x) ⊆ C̃] := ax for every x ∈ (Fn
q )

`, then P̃[S = C̃] given by Lemma 3.1(ii) is a
solution of the program in Fig. 9 with the same value.

Conversely, if P̃[S = C̃] is a solution of the program in Fig. 9, then setting ax := P̃[span(x) ⊆ C̃]
via Lemma 3.1(i) gives a solution of PartialKrawtchoukLPFq

Lin(n, d, `) with the same value.

Proof. The program in Fig. 9 is the same as the program in Fig. 8 with additional partial Fourier
constraints. We can then follow the proof of Lemma 3.2 except for these additional constraints
which we now analyze.

For I ⊆ [`] and α ∈ (Fn
q )

`, let θα := θα1 ⊗ · · · ⊗ θα` , where θαi := χαi for i ∈ I and θαi := 1αi for
i ∈ [`] \ I . The left-hand side of the Fourier constraint for θα is

∑
x∈(Fn

q )
`

P̃[span(x) ⊆ C̃]θα(x) = ∑
x∈(Fn

q )
`

θα(x) ∑
T>span(x)

P̃[T] = ∑
S6Fn

q

P̃[S] ∑
x∈S`

θα(x).

We now prove the following claim.

Claim 4.3. For I ⊆ [`], α ∈ (Fn
q )

` and S 6 Fn
q , we have

∑
x∈S`

θα(x) =


|S||I| ∏

j∈[`]\I
1αj∈S, if S 6 span(αi : i ∈ I)⊥,

0, otherwise.

Proof of Claim 4.3. Clearly, if there exists j ∈ [`] \ I such that αj /∈ S, then the sum above is zero.
Suppose then that for every j ∈ [`] \ I , we have αi ∈ S. Then the sum becomes

∑
x∈SI

∏
j∈I

χαj(xj),

and the result follows by Claim 3.3. �
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Let U := span(αi : i ∈ I)⊥ and let T := span(αi : i ∈ [`] \ I). By Claim 4.3, the Fourier
constraint corresponding to θα is equivalent to

∑
T≤S6U

|S||I| P̃[S] > 0.

Since the program in Fig. 9 has the partial Fourier constraints

∑
T6S6U

|S|r P̃[S] > 0 ∀T ≤ U 6 Fn
q : n−dim(U)≤r≤`,

dim(T)≤`−r ,

it remains to show every U and T above can be obtained as U = span(αi : i ∈ I)⊥ and T =
span(αi : i ∈ [`] \ I).

Indeed, for every such U 6 Fn
q with u := dim(U) ≥ n − `, we can use r ∈ {n − u, . . . , `}

entries in the vector α to specify a spanning set for U⊥. These entries will correspond to some
I ⊆ [`] of size r. We then use the remaining ` − r entries of α to specify a spanning set for the
space T ≤ U of dimension at most `− r, concluding the proof. �

4.2 Exact Completeness Proof

We now prove the exact completeness of the partial Krawtchouk hierarchy of [LL22].

Theorem 4.4. For ` ≥ n, we have ALin
q (n, d) = val(PartialKrawtchoukLPFq

Lin(n, d, `)). More pre-

cisely, every GL`(Fq)-invariant optimum solution of PartialKrawtchoukLPFq
Lin(n, d, `) is integral.

Proof. By Lemma 4.1 and similarly to Theorem 3.5, it is enough to show that every optimum
solution P̃ of the pseudoprobability program in Fig. 8 is nonnegative.

Note that the feasible region of this pseudoprobability program is the same as the one of the
pseudoprobability program of Fig. 5, so we can follow the same completeness proof of Theo-
rem 3.5, except for the objective function analysis. Inspecting that proof, we see that it only
requires the property that the objective value increases if mass is moved to larger dimensional
spaces. This property is also satisfied by the new objective function ∑S≤Fn

q
|S| P̃[S] so we are

done. �

5 On Integrality Related Properties

In this section, we discuss some properties related to the integrality of the Krawtchouk hier-
archies. Recall that by the results of Sections 3 and 4, integrality of GL`(Fq)-invariant solutions is
equivalent to nonnegativity of solutions in the pseudoprobability formulations; as such, we will
slightly abuse notation and say that the polytope of the pseudoprobability formulation is integral
when all its feasible solutions are nonnegative.

We start by showing that the polytope of the pseudoprobability formulation of the program
KrawtchoukLPFq

Lin(n, d, `) is not integral no matter how large is the level of the hierarchy.
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Proposition 5.1. The polytope defined by the constraints of the pseudoprobability formulation
from Fig. 4 is not integral for any k0 ≥ 2.

Proof. We construct a feasible solution to the program in Fig. 5 having a negative pseudoprobabil-
ity. Let T ≤ Fn

q be any subspace of dimension k0 of minimum distance at least d and let T′ ≤ T be
an arbitrary one dimensional space. Since k0 ≥ 2, we have T′ 6= T. Let ε ∈ (0, 1). Now for each
S ≤ Fn

q , we set

P̃[S] :=



1−
(

ε− ε

|S|`

)
, if S = T,

− ε

|S|`
, if S = T′,

ε, if S = {0},
0, otherwise.

We claim that the above is a feasible solution. The proof is a simple verification. The values P̃[S]
clearly sum to 1 satisfying the normalization constraint. Since T has minimum distance at least d,
so does T′, hence the distance constraints are satisfied. The Fourier constraint of T′ is∣∣T′∣∣` P̃[T′] + P̃[{0}] = 0.

Since all values except from P̃[T′] are nonnegative and the Fourier constraint of T′ is satisfied, we
have that all Fourier constraints hold. The nonnegative constraint for T′ is

∑
S>T′

P̃[S] = P̃[T] + P̃[T′] = 1−
(

ε− ε

|S|`

)
− ε

|S|`
= 1− ε ≥ 0,

where the last inequality follows from our choice of ε. All other nonnegative constraints are easily
seen to hold and we conclude the proof. �

Despite the polytope not being integral no matter how large is the level, the following ap-
proximate integrality property holds: any given non-integral solution becomes infeasible at a suf-
ficiently large level.

Proposition 5.2. Let {P̃[S]}S≤Fn
q

be a feasible solution to level ` of program Fig. 4. If one of the
variables is negative, then there exist `′ ≥ ` large enough such that this solution is infeasible for
level `′.

Proof. Let U ≤ Fn
q be any space such that P̃[U] < 0 and its dimension is maximum with this

property. Note that U is well-defined by assumption. We claim that the Fourier constraint

∑
S6U
|S|`

′
P̃[S] ≥ 0

becomes violated for a sufficiently large `′ ≥ `. By dividing this Fourier constraint by |S|`
′
, only

the coefficient of P̃[U] remains 1 while all other coefficients shrink as `′ grows since U is the space
of largest dimension appearing in the sum. �
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Let us now show that the additional partial Fourier constraints ensure that the polytope of the
pseudoprobability formulation of the hierarchy PartialKrawtchoukLPFq

Lin(n, d, `) is actually inte-
gral for ` ≥ n. Note that this provides an alternative proof of exact completeness.

Proposition 5.3. The polytope defined by the constraints of the pseudoprobability formulation
from Fig. 9 is integral for ` ≥ n.

Proof. We will show that P̃[T] ≥ 0 for every T 6 Fn
q . Combined with the normalization con-

straint ∑T≤Fn
q

P̃[T] = 1, we will have a true probability distribution over valid codes and thus the
polytope will be integral. Recall the Fourier constraints from Fig. 9,

∑
T6S6U

|S|r P̃[S] > 0 ∀T ≤ U 6 Fn
q : n−dim(U)≤r≤`,

dim(T)≤`−r .

Since ` ≥ n, by choosing r := n−dim(U), we can take T := U. In this case, the sum above reduces
to only the term P̃[U] with the coefficient |U|r > 0. This readily implies P̃[U] ≥ 0. �

6 Conclusion

In this paper, we proved exact completeness by level n of the LP hierarchies KrawtchoukLP
and PartialKrawtchoukLP of [CJJ22] and [LL22], respectively. Our techniques involved passing to
a formulation of these hierarchies in terms of pseudoprobabilities (after appropriate symmetriza-
tion under the natural GL`(Fq) action) and showing that optimum solutions are integral (i.e., are
convex combinations of true solutions, corresponding to linear codes). We also observed two
structural properties about the feasible polytopes of these hierarchies: while for KrawtchoukLP
no level guarantees integrality of the polytope, for PartialKrawtchoukLP, the polytope is integral
by level n.

As mentioned before, the completeness results of these hierarchies should be seen as theoreti-
cal results that can serve as basis for a theoretical analysis of the asymptotic behavior of ALin

q (n, d).
However, neither of the hierarchies should be computationally run as high as level ` = n, since
even writing the constraints at this level involves checking which `-dimensional subspaces satisfy
the distance constraints. If ` > k0 := logq ALin

q (n, d), then we would be able to deduce the value of
k0 by simply noting that no subspace of dimension k0 + 1 satisfies the distance constraints. This
simple observation makes plausible that the hierarchies could be complete by an earlier level, say
O(k0).
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