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Abstract

We study a general class of nonlinear iterative algorithms which includes power
iteration, belief propagation and approximate message passing, and many forms of
gradient descent. When the input is a random matrix with i.i.d. entries, we use Boolean
Fourier analysis to analyze these algorithms as low-degree polynomials in the entries of
the input matrix. Each symmetrized Fourier character represents all monomials with
a certain shape as specified by a small graph, which we call a Fourier diagram.

We prove fundamental asymptotic properties of the Fourier diagrams: over the ran-
domness of the input, all diagrams with cycles are negligible; the tree-shaped diagrams
form a basis of asymptotically independent Gaussian vectors; and, when restricted to
the trees, iterative algorithms exactly follow an idealized Gaussian dynamic. We use
this to prove a state evolution formula, giving a “complete” asymptotic description of
the algorithm’s trajectory.

The restriction to tree-shaped monomials mirrors the assumption of the cavity
method, a 40-year-old non-rigorous technique in statistical physics which has served as
one of the most important techniques in the field. We demonstrate how to implement
cavity method derivations by 1) restricting the iteration to its tree approximation, and
2) observing that heuristic cavity method-type arguments hold rigorously on the sim-
plified iteration. Our proofs use combinatorial arguments similar to the trace method
from random matrix theory.

Finally, we push the diagram analysis to a number of iterations that scales with the
dimension n of the input matrix, proving that the tree approximation still holds for a
simple variant of power iteration all the way up to nΩ(1) iterations.
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1 Introduction

We study nonlinear iterative algorithms which take as input a matrix A ∈ Rn×n, maintain a
vector state xt ∈ Rn, and at each step

1. either multiply the state by A,
xt+1 = Axt ,

2. or apply the same function ft : Rt+1 → R to each coordinate of the previous states,

xt+1 = ft(xt, . . . , x0) .

This class of algorithms has been coined general first-order methods (GFOM) [CMW20,
MW22b]. GFOM algorithms are a simple, widespread, practically efficient, and incred-
ibly powerful computational model. Alternating linear and nonlinear steps can describe
first-order optimization algorithms including power iteration and many types of gradient de-
scent (see [CMW20, GTM+22]). This definition also captures belief propagation and other
message-passing algorithms which play a central role not only in the design of Bayes-optimal
algorithms for planted signal recovery [FVRS22], but also recently in average-case complexity
theory for the optimization of random polynomials [AMS23].

In machine learning and artificial intelligence, deep neural networks exhibit a similar
structure which alternates multiplying weight matrices and applying nonlinear functions.
Remarkably, viewed from this level of generality, the line blurs between neural networks and
the gradient descent algorithms used to train them.

Despite the widespread use of GFOM and deep neural networks, developing a mathe-
matical theory for these algorithms continues to be a major challenge. Thus far, it has been
difficult to isolate mathematical theorems which describe key phenomena but avoid being
too specific to any one setting, model, or algorithm. That being said, one effective theory
has emerged at the interface of computer science, physics, and statistics for studying a class
of nonlinear iterations known as Belief Propagation (BP) and Approximate Message Pass-
ing (AMP) algorithms. This theory is most developed for inputs A that are dense random
matrices with i.i.d entries, also known as a mean-field models in physics, and which can be
considered the simplest possible model of random data.

The analysis of BP and AMP algorithms in this setting can be summarized by the state
evolution formula [DMM09, Bol14]. This is an impressive “complete” description of the
trajectory of the iterates xt ∈ Rn, in the limit n → ∞. Specifically, state evolution defines
a sequence of scalar random variables Xt such that for essentially any symmetric quantity
of interest related to xt, the expectation of a corresponding expression in Xt approximates
the quantity with an error that goes to 0 as n → ∞. This yields analytic formulas for
quantities such as the loss function or objective value achieved by xt, the norm of xt, the
correlation between xs and xt across iterations, or the fraction of xt’s coordinates which lie
in the interval [−1,+1]. The ability to precisely analyze the trajectory and the fixed points
of message-passing algorithms (through Xt with large t) has been key to their applications.

State evolution for BP/AMP iterations was originally predicted using a powerful and
influential technique from statistical physics known as the cavity method. Variants of BP
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have been studied in physics as “non-linear dynamical systems” as far back as the work
of Bethe [Bet35], although the algorithmic perspective came into prominence only later.
The cavity method and the related replica method were devised in the 1980s [Par79, Par80,
MPV86, MPV87], initially as a tool to compute thermodynamic properties of disordered sys-
tems, and later as a tool for analyzing belief propagation algorithms. Since their introduction,
the cavity method and the replica method have served as two of the most fundamental tools
in the statistical physics toolbox.

The deployment of these techniques has undoubtedly been a huge success; there are many
survey articles offering various perspectives from different fields [YFW03, MM09, KF09,
ZK16, Gab20, FVRS22, ZY22, CMP+23]. However, the reality is that the situation is not as
unified as the above picture would suggest, due to a major issue: the physical methods are
not mathematically rigorous.

At present, there exists a significant gap between how results are established in the physi-
cal and mathematical literature. The two general types of results are: 1) simple non-rigorous
arguments based on the cavity/replica method; 2) mathematically rigorous arguments that
confirm the physical predictions, but with technically sophisticated proofs that can’t closely
follow the path of the physical reasoning. For example, the state evolution formula was first
proven by Bolthausen [Bol14] using a Gaussian conditioning technique which is fairly tech-
nically involved. Although many proofs have been found for predictions of the cavity and
replica methods, none can be said to clearly explain the success of the physicists’ techniques.

It has appeared that the physicists have some secret advantage yet unmatched by rigorous
mathematics. Is there a simple and rigorous mathematical framework that explains why the
assumptions made by physicists always seem to work?

1.1 Our contributions

We introduce a new method to analyze nonlinear iterations based on Fourier analysis, when
the input to the algorithm is a random matrix with i.i.d entries. Our framework gives proofs
that are able to closely follow heuristic physics derivations.

Our strategy is to replace the original iteration (xt)t≥0 by an idealized version

xt ≈ x̂t ,

which we call the tree approximation to xt. The analysis then follows a two-step structure:

1. The tree approximation x̂t tracks the original iteration xt up to a uniform Õ(n− 1
2 )

entrywise error. Hence, any reasonable asymptotic result established on (x̂t)t≥0 (such
as the joint distribution of their entries) automatically extends to (xt)t≥0.

2. Cavity method-type reasoning can be rigorously applied to the tree approximation.
In cases where x̂t has already been analyzed in physics, one can essentially copy the
heuristic physics derivation.

Analyzing x̂t is a significant simplification compared to the entire state xt—in fact, we
show that the former follows an explicit Gaussian dynamic. The simplification directly
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yields a state evolution formula for GFOM algorithms, as well as rigorous implementations
of physics-based cavity method arguments (in the algorithmic or “replica symmetric” setting
of the method). In other words, our new notion of tree approximation matches implicit
assumptions of the cavity method and gives a way to justify them.

We define the tree approximation x̂t essentially as follows: we expand the entries of xt as
polynomials in the entries of the input matrix A ∈ Rn×n. If we represent the monomials (e.g.
A12A23A24) as graphs in the natural way, then x̂t consists of only the monomials appearing
in xt whose graph is a tree. Hence, we will show that the state of an iterative algorithm can
be tightly approximated using the much smaller set of tree monomials.

Fourier diagrams. We view iterates of a GFOM with polynomial non-linearities as vector-
valued polynomials in the entries of A. These polynomials have a special symmetry: they
are invariant under permutations of the row/column indices of A.

The polynomial representation can be visualized using Fourier diagrams, each of which
is a small graph representing all the monomials with a given shape. For example, here are
three Fourier diagrams along with the vectors associated with them.

Zi :=
n∑

j=1
i, j distinct

Aij
Z ′

i :=
n∑

j,k=1
i, j, k distinct

AijAjk Z ′′
i :=

n∑
j,k=1

i, j, k distinct

AijAik

In general, a Fourier diagram is an undirected rooted multigraph α = (V (α), E(α)) which
represents the vector Zα ∈ Rn whose entries are:

Zα,i :=
∑

injective φ : V (α)→[n]
φ( )=i

∏
{u,v}∈E(α)

Aφ(u)φ(v) , for all i ∈ [n] . (1)

We use ∈ V (α) to notate the root vertex.

The symmetry of the GFOM operations ensures that in the polynomial representation
of an iterate xt, all monomials corresponding to the same Fourier diagram come with the
same coefficient. Therefore, any iterate xt of a GFOM with polynomial non-linearities can
be expressed as a linear combination of Fourier diagrams, in which case we say that it is
written in the Fourier diagram basis.

We emphasize that these diagrams are constructed by summing over injective embeddings
φ : V (α) → [n], a crucial detail for the results that follow. The term “Fourier” reflects that
this basis of polynomials is a symmetrized version of the standard Fourier basis from Boolean
function analysis (see Section 3.4).
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Asymptotic diagram analysis. It turns out that something special happens to the
Fourier diagram basis in the limit n → ∞ , when A is a symmetric matrix with indepen-
dent mean-0, variance- 1

n
entries. Informally, the entries of the diagrams become mutually

independent, and the following properties hold.

• The Fourier diagrams with cycles are negligible.

• The Fourier tree diagrams with one branch from the root are independent Gaussian
vectors.

• The Fourier tree diagrams with several branches from the root are Hermite polynomials
in the Gaussians represented by the branches.

Most importantly, the only non-negligible contributions come from the trees. Based
on this classification, we define the tree approximation x̂t of an expression xt written in the
Fourier diagram basis to be obtained by discarding all diagrams with cycles. That is, as
polynomials in A , x̂t consists of the tree-shaped monomials in xt.

The reason that cyclic Fourier diagrams are negligible is combinatorially intuitive: cyclic
diagrams sum over fewer terms than tree-shaped diagrams. For example, the left diagram is
a sum over ≈n4 terms, each mean-zero with magnitude ∼ n−2, so the overall magnitude is
Θ(1). The right diagram is a sum over ≈n3 terms, again of magnitude n−2, so the overall
of order of the diagram is Θ(n−1/2).

We now state our main theorems. In all of them, we assume that A is a symmetric matrix
with independent mean-0 variance- 1

n
entries (see Assumption 2.1). First, we formalize the

classification above by proving that all joint moments of the Fourier diagrams converge to
those of the corresponding random variables in a Gaussian space.

Theorem 1.1 (Classification theorem; see Theorem 4.11). For any k ≥ 0 independent of n,
for all connected Fourier diagrams α1, . . . , αk and i1, . . . , ik ∈ [n] (allowing repetitions in αj

and ij),

E
A

[
k∏

j=1

Zαj ,ij

]
= E

[
k∏

j=1

Z∞
αj ,ij

]
+O(n− 1

2 ) ,

where for any connected Fourier diagram α and i ∈ [n],

1. Z∞
α,i = 0, if α has a cycle.

2. Z∞
α,i ∼ N (0, |Aut(α)|) independently, if α is a tree whose root has degree 1.

3. Z∞
α,i =

∏
τ hdτ (Z

∞
τ,i ; |Aut(τ)|) if α is a tree consisting of dτ copies of each tree τ from

case 2 merged at the root, where hdτ are the Hermite polynomials (defined in Section 2).
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Next, we prove that the tree approximation of a GFOM closely tracks the original itera-
tion. This addresses the first of the two steps from the overview of our method.

Theorem 1.2 (Tree approximation of GFOMs; see Theorem 4.14). Let t be a constant,
xt ∈ Rn be the state of a GFOM with polynomial non-linearities, and x̂t ∈ Rn be the state
obtained by performing the GFOM operations on only the tree diagrams. Then with high
probability over A,

∥xt − x̂t∥∞ = Õ(n− 1
2 ) .

The statement of this theorem exactly isolates a key and subtle point: not only are the
cyclic diagrams negligible at time t, but they will never blow up to affect the state at any
future time. The fact that “approximation errors do not propagate” is what gives us the
ability to pass the algorithm to an asymptotic limit.1

The proof of Theorem 1.2 is intuitive. According to the diagram classification theorem,
we can tease out the approximation error for xt as the monomials with cycles, whereas the
approximating quantity x̂t consists of the tree monomials. When a GFOM operation is
applied, the cycles persist in all cyclic monomials, and hence they continue to be negligible.

As a direct consequence of these results, we deduce a very strong form of state evolution
for all GFOM algorithms. The theorem below paints a nearly complete picture of the evolu-
tion of xt as n independent trajectories of a single random variable Xt which is an “idealized
Gaussian dynamic” in correspondence with x̂t.

Theorem 1.3 (General state evolution; see Theorem 4.18). Let t be a constant, xt ∈ Rn be
the state of a GFOM with polynomial non-linearities, and let Xt be the asymptotic state of
xt (Definition 3.7). Then:

(i) For each i ∈ [n], (x0,i, . . . , xt,i)
d−→ (X0, . . . , Xt). Furthermore, the coordinates’ trajec-

tories {(x0,i, . . . , xt,i) : i ∈ [n]} are asymptotically independent.

(ii) With high probability over A,

1

n

n∑
i=1

xt,i = E[Xt] + Õ(n− 1
2 ) .

Quantities such as the norm of xt can be computed using part (ii) along with one addi-
tional GFOM iteration that squares xt componentwise. Without much extra work, Theo-
rem 1.3 also encapsulates other key features of previous state evolution formulas including
quantitative error bounds (similar to the main result of [RV18]) and universality (the main
result of [BLM15]).2

1This directly addresses a question raised in the seminal paper of Donoho, Maleki, and Montanari on
approximate message passing [DMM10, Section III.E].

2Similarly to [BLM15], our technical analysis assumes that the nonlinearities in the GFOM are polynomial
functions, but other works have been able to handle the larger class of pseudo-Lipschitz non-linearities. We
do not find this assumption to be too restrictive since it is known in many cases that we can approximate
the non-linearities by polynomials [IS24, Appendix B].
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The cavity method. To explain the cavity method in one sentence, it allows you to
assume that “loopy” message-passing algorithms on random dense graphs behave as if on a
tree, gaining extra properties such as the independence of incoming messages. It turns out
that the assumption of being on a tree matches the restriction to tree-shaped monomials in
A, leading to a way to rigorously implement simple cavity method reasoning.

We formalize two types of cavity method arguments. For the first one, we introduce
a combinatorial notion of asymptotic equality

∞
= which can rigorously replace heuristic

approximations in the cavity method.

Definition 1.4 (
∞
= , informal version of Definition 4.4). Let x

∞
= y if x − y is a sum of

constantly many diagrams with cycles.

As an application of this definition, we implement the cavity method argument that
belief propagation and approximate message passing are asymptotically equivalent for dense
random matrices.

Theorem 1.5 (Equivalence of BP and AMP; see Theorem 5.1). Let mBP
t and mAMP

t be the
iterates of respectively the belief propagation and the approximate message passing iterations
on the same non-linearities (see Eqs. (11) and (13)). Then with high probability over A,∥∥mBP

t −mAMP
t

∥∥
∞ = Õ(n− 1

2 ) .

We also use
∞
= to prove a fundamental assumption of the cavity method for belief prop-

agation iterations on dense models, namely that the messages incoming at a vertex are
asymptotically independent.

Theorem 1.6 (Asymptotic independence of incoming messages; see Theorem 5.9). Let mBP
t

be the iterates of a belief propagation iteration (Eq. (11)). For any j ∈ [n], the incoming
messages at j, {mt

i→j : i ∈ [n], i ̸= j}, are asymptotically independent.

The second way that we formalize the cavity method reasoning is through the idealized
Gaussian dynamic Xt in Theorem 1.3. We recover the vanilla form of state evolution for
approximate message passing, since in this case, Xt has a simple description.

Theorem 1.7 (Asymptotic state of AMP; see Theorem 5.10). Consider the AMP iteration

xt+1 = Aft(xt, . . . , x0)−
1

n

t∑
s=1

n∑
i=1

∂ft
∂xs

(xt,i, . . . , x0,i)fs(xs, . . . , x0) . (2)

The asymptotic state of (x0, x1, . . .) is a centered Gaussian vector (X0, X1, . . .) with covari-
ances given by the recurrence, for all s, t,

E [XsXt] = E [fs−1(Xs−1, . . . , X0)ft−1(Xt−1, . . . , X0)] .

The subtracted term in Eq. (2) is called the Onsager correction which, as we show, is care-
fully designed to cancel out a backtracking term in the asymptotic tree space (Lemma 5.11).

We emphasize that Theorems 1.5 and 1.7 are known. They were originally predicted
with the cavity method, then later confirmed by rigorous proofs (in [BLM15] and [Bol14,
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BM11, CMW20], respectively). The main message about our proofs is the new and quite
comprehensive perspective obtained through the tree approximation, providing a clear way
in which GFOM algorithms on dense random inputs “can be assumed to occur on a tree”.

Finally, we provide an exposition in Section 5.5 of the breakthrough iterative AMP algo-
rithm devised by Montanari to compute ground states of the Sherrington–Kirkpatrick model
[Mon19, AM20, AMS21]. We explain from the diagram perspective how the algorithm is the
optimal choice among algorithms which “extract” a Brownian motion from the input.

Taking the tree approximation farther. The asymptotic theory above applies to an
iterative algorithm running for a constant number of iterations. Although this “short-time”
setting is used in a large majority of previous works in this area, there is interest in extending
the analysis to, say, O(log n) iterations, which may be enough to capture planted recovery
from random initialization and distinct phases of learning algorithms [LFW23].

Can we use the tree-like Fourier characters to analyze the long-time behavior? We show
in Section 6 that some care needs to be taken. First, we prove a positive result, that the
tree approximation continues to hold for nΩ(1) iterations for a simple belief propagation
algorithm (debiased power iteration, or asymptotically equivalently, power iteration on the
non-backtracking walk matrix).

Theorem 1.8 (See Theorem 6.2). Generate xt ∈ Rn from the debiased power iteration and
let x̂t be the tree approximation to xt. Then there exist universal constants c, δ > 0 such that
for all t ≤ cnδ,

∥xt − x̂t∥∞
a.s.−→ 0 .

However, we also identify some problems with the technology which suggest that new
ideas will be needed to completely capture the long-time setting. We observe that the asymp-
totic Gaussian classification theorem is no longer valid for diagrams of size t ≈ log n. Finally,
we identify a further threshold at t ≈

√
n iterations beyond which the tree approximation

we use seems to break down.

Conclusion. We demonstrate that for iterative algorithms running on dense random in-
puts, trees are all you need. The tree-shaped Fourier diagrams form an asymptotic basis of
independent Gaussian vectors associated to an arbitrary Wigner matrix. This basis seems
extremely useful, and we are not aware of any previous works on it.

We note that from the outset, it is not at all clear how to find this basis. Individual
monomials (i.e. Boolean Fourier characters) such as A12A23A34 and A12A23A13 have the
same magnitude, and the asymptotic negligibility of the cyclic terms including A12A23A13

only appears after summing up the total contribution of all monomials with the same shape.
Furthermore, grouping terms in a different way does not identify our notion of tree approx-
imation, such as by allowing repeated indices in Eq. (1) (as done in [BLM15, IS24]). In
this repeated-label representation, there is no clear notion of tree approximation of iterative
algorithms (in fact, with this alternative definition, the iterates of a GFOM can always be
represented exactly with trees!) or of the simplified Gaussian dynamic on trees, which is
central to our approach.
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As we show, the Fourier tree approximation leads to streamlined proofs of several ar-
guments based on the cavity method. We believe that this framework has potential to
generalize well beyond the Wigner case and to address outstanding open problems in the
area—such as the long-time setting mentioned above.

1.2 Related work

Comparison with prior work. Our analysis is based on the recent “low-degree paradigm”
in which algorithms are analyzed as low-degree multivariate polynomial functions of the
input [KWB19]. Several recent works have used a similar approach for iterative algo-
rithms [BLM15, MW22a, IS24], with subtle but crucial differences to our work.

Bayati, Lelarge, and Montanari [BLM15] decompose the AMP iterates into certain “non-
reversing” labeled trees. They also observe that the Onsager correction corresponds to a
backtracking term. Montanari and Wein [MW22a, Section 4.2] introduce an orthogonal dia-
gram basis (similar to our Fourier diagram basis) in their proof that no low-degree polynomial
estimator can outperform AMP for rank-1 matrix estimation. Ivkov and Schramm [IS24]
use a repeated-label representation to show that AMP can be robustified.

Diagrammatically, the main advantage of our method is the precise choice of the Fourier
diagram basis. By summing over injective a.k.a. self-avoiding labelings φ in Eq. (1), each
diagram exactly describes all monomials with a given shape. When working with other poly-
nomial basis, for example diagrams with repeated labels [BLM15, IS24] (see Appendix A.3),
the key properties of the Fourier diagram basis (the family of asymptotically independent
Gaussian vectors and the associated Gaussian dynamic) do not seem clearly visible. In
particular, previous work does not show the tree approximation.

Our results stated above which are cavity method-based reproofs of existing results are
Theorem 1.5, which essentially follows from [BLM15, Proposition 3], and Theorem 1.7, which
was first proven by Bayati and Montanari [BM11]. Notably, Bayati, Lelarge, and Montanari
[BLM15] use an approach based on the moment method as we do. Their proof is somewhat
more technical, it does not use the Fourier diagram basis, and it is not able to clearly follow
the simple cavity method argument that we reproduce in Section 5.2.1.

We also compare our state evolution formula for GFOM in Theorem 1.3 with a state
evolution formula for GFOM proven by [CMW20]. They give a reduction from GFOM to
AMP to derive a state evolution formula for GFOM. The corresponding description of the
asymptotic state X0, . . . , Xt is inside a very compressed probability space generated by t
Gaussians with a certain covariance structure.

Our description of the random variables X0, . . . , Xt (necessarily having the same distri-
bution) has a simpler interpretation inside a larger probability space generated by (Z∞

σ )σ∈S .
Both descriptions of the asymptotic state Xt are likely to be valuable for different purposes
or explicit calculations. Our formulation of state evolution also includes the asymptotic
independence of the trajectories of different coordinates.
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Analyzing algorithms as low-degree polynomials. Our technical framework is adapted
from the average-case analysis of Sum-of-Squares algorithms. The Sum-of-Squares algo-
rithm is a powerful meta-algorithm for combinatorial optimization and statistical inference
[RSS18, FKP19]. Sum-of-Squares has been successfully analyzed on i.i.d. random inputs
using graph matrices, which are a Fourier basis for matrix-valued functions of a random
matrix A in the same way that our diagram basis is a basis for vector-valued functions of A.

The theory appears much more pristine in the current setting, so we hope that the current
results can bring some new clarity to the technically challenging works on Sum-of-Squares.
Many key ideas on graph matrices are present in a pioneering work by Barak et al. which
analyzes the Sum-of-Squares algorithm for the Planted Clique problem [BHK+19] (building
on earlier work [DM15, MPW15, HKP+18]). Analytical ideas were subsequently isolated by
Ahn, Medarametla, and Potechin [AMP20] and Potechin and Rajendran [PR20, PR22] and
developed in several more works [GJJ+20, RT23, JPR+21, JP22, Jon22, JPRX23, KPX24].
Several recent works have made explicit connections between AMP, Sum-of-Squares, and low-
degree polynomials [MW22a, IS24, SS24a, SS24b]. Another similar class of diagrammatic
techniques are tensor networks [MW19, KMW24].

Statistical physics and the cavity method. The cavity and replica methods are widely
used in statistical physics to compute the free energy, complexity, etc. of Gibbs distributions
on large systems, or similarly to compute the satisfiability threshold, number of solutions,
etc. for many non-convex random optimization problems. For an introduction to statistical
physics methods in computer science, we recommend the surveys [MMZ01, ZK16, Gab20],
the book [MM09], and the 40-year retrospective [CMP+23]. The cavity method is described
in [MP03] and [MM09, Part V].

Rigorously verifying the predictions of the physical methods has been far from easy for
mathematicians. To highlight some major landmarks in the literature over the past decades,
tour-de-force proofs of the Parisi formula for the free energy of the SK model were developed
by Talagrand [Tal06, Tal10] and Panchenko [Pan13]. Ding, Sly, and Sun [DSS16, DSS14,
DSS22] identified the satisfiability threshold for several random optimization problems in-
cluding k-SAT with large k. Ding and Sun [DS19] and Huang [Hua24] rigorously analyze
the storage capacity of the Ising perceptron, assuming a numerical condition.

Note that the results above are strictly outside the regime of the current work. They
require the replica method in “replica symmetry breaking” settings, whereas we study the
simpler but related cavity method in the replica symmetric setting. k-SAT is also a sparse
(a.k.a. dilute) model whereas our results are for dense (a.k.a. mean-field) models. Despite
these differences, our results tantalizingly suggest that it may be possible to validate the
physical techniques in a more direct and generic way than taken by current approaches.

Other authors have also directly considered the cavity assumption, albeit using a less
combinatorial approach. Both proofs of the Parisi formula implement analytic forms of the
cavity calculation ([Tal10, Section 1.6] and [Pan13, Section 3.5]). The cavity method can
also be partially justified for sparse models in the replica symmetric regime using that the
interactions are locally treelike with high probability [BN06, CKPZ17].

Diagrammatic methods are common in physics, and in fact they have been used in
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the vicinity of belief propagation even since a seminal 1977 paper by Thouless–Anderson–
Palmer [TAP77] which introduced the TAP equations of Eq. (9). A version of the tree
approximation actually appears briefly in their diagrammatic formula for the free energy
of the SK model in Section 3. However, it has not been clear how or whether these argu-
ments could be made rigorous, and to date, rigorous proofs have not directly followed these
approaches.

Belief propagation and AMP. Belief propagation originates in computer science and
statistics from Pearl [Pea88]. In the current setting, we can view the underlying graphical
model as the complete graph, with correlations between the variables induced by the random
matrix A. State evolution was first predicted for BP algorithms in this setting by Kabashima
[Kab03] and Donoho–Maleki–Montanari [DMM09]. Since the first rigorous proof of state
evolution by Bolthausen [Bol14], his Gaussian conditioning technique has been extended to
prove state evolution for many variants of AMP [BM11, JM13, MRB17, Tak19a, BMN20,
Tak19b, AMS21, Tak21, Lu21, FVRS22, Fan22, GB23, HS23].

A notably different proof of state evolution by Bayati, Lelarge, and Montanari [BLM15]
uses a moment-based approach which is closer to ours (see also follow-up proofs [CL21,
DG21, WZF22, DLS23]). These proofs and also ours show universality statements which the
Bolthausen conditioning method cannot handle.

All of the above works restrict themselves to a constant number of iterations, although
some recent papers push the analysis of AMP in some settings to a superconstant number of
iterations [RV18, CR23, WZ23, WZ24]. Very recently, [LW22, LFW23] managed to analyze

t = Ω̃(n) iterations of AMP in the spiked Wigner model. This last line of work is especially
intriguing, given that our approach seems to break down at t ≈

√
n (Section 6.1).

The perspective that we take is slightly different from most of these papers. Whereas
previous works analyze the asymptotic distribution of the AMP iterates over the randomness
of A, we give an explicit function x̂t which exactly satisfies a “Gaussian dynamics” and
asymptotically approximates the iterates. This general approach provides more information
and we hope that it has increased potential for generalization.

On first-order iterations which are not BP/AMP algorithms, a smaller number of physical
analyses have been performed using the more general techniques of dynamical mean field
theory [MSR73]. We refer to the survey [Gab20]. Most analyses rely on heuristic arguments,
although some more recent works [CCM21, GTM+22, LSS23] prove rigorous results.

Finally, we note that the tree approximation bears similarities to the suppression of cross-
ing partitions in free probability [NS06]. Unlike the traditional viewpoint of free probability,
the combinatorial cancellations behind the tree approximation occur directly on the trajec-
tory of random objects (the iterates of the algorithm), and not only for averaged quantities
associated with them.

1.3 Organization of the paper

After background preliminaries in Section 2, we introduce the diagrams in Section 3 and
describe their key properties without proofs.

10



In Section 4, we present the full diagram analysis: we define the key notion of asymptotic
equality

∞
= , and we prove three central theorems: the classification of the diagrams (Theo-

rem 4.11), the tree approximation for GFOMs (Theorem 4.14), and a general state evolution
formula (Theorem 4.18).

In Section 5, we demonstrate the connection with the cavity method by proving the
equivalence between belief propagation and approximate message passing (Theorem 5.1),
the independence of incoming messages in belief propagation (Theorem 5.9), the state evo-
lution formula for AMP (Theorem 5.10), and the analysis of the iterative AMP algorithm of
Montanari.

Finally, Section 6 investigates algorithms running for a large number of iterations.

Appendices A to C contain omitted proofs and calculations.

Acknowledgments. We are pleased to thank numerous colleagues for feedback and discus-
sions as this work developed, including Giorgi Kanchaveli, Carlo Lucibello, Enrico Malatesta,
Goutham Rajendran, Alon Rosen, and Riccardo Zecchina. Work supported in part by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement Nos. 834861 and 101019547). CJ is also a member
of the Bocconi Institute for Data Science and Analytics (BIDSA).

2 Preliminaries

To maintain generality, we specify the input (a random matrix) and the algorithm (a first-
order iteration), but we do not specify an objective/energy function, and for this reason
our results are in the flavor of random matrix theory. While the setting of this paper is a
null model without any hidden signal, we expect that our techniques can also be applied to
planted recovery problems. A concrete algorithmic application to keep in mind in the null
model is the optimization of random degree-2 polynomials that we revisit in Section 5.5.

Our results will apply universally to a Wigner random matrix model (they hold regardless
of the specific choice of µ, µ0 below).

Assumption 2.1 (Assumptions on matrix entries). Let µ and µ0 be two subgaussian3 dis-
tributions on R such that EX∼µ[X] = 0 and EX∼µ[X

2] = 1.

Let A be a random n×n symmetric matrix with independent entries (up to the symmetry)
which are either

√
nAii ∼ µ0 on the diagonal or

√
nAij ∼ µ off the diagonal.

The subgaussian assumption on µ and µ0 can be relaxed to require only the existence
of the q-th moment of µ for some large enough constant q ∈ N that depends only on the
number of iterations and the degree of the nonlinearities appearing in the algorithm. In this
case, our statements of the form “∥xn− yn∥∞ = Õ(n−1/2) with high probability”4 weaken to
“∥xn − yn∥∞

a.s.−→ 0”.

3A distribution µ on R is subgaussian if there exists a constant C > 0 such that for all q ∈ N, EX∼µ[|X|q] ≤
Cqqq/2.

4We say a sequence of events (An)n≥0 occurs with high probability if Pr(An) ≥ 1− 1/poly(n).
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Definition 2.2 (Convergence of random vectors). Let (Xn)n∈N and Z be random vectors.

• We write Xn
a.s.−→ Z if Xn converges to Z almost surely, i.e. limn→∞ Xn exists and

equals Z with probability 1.

• We write Xn
d−→ Z if Xn converges to Z in distribution, i.e. for every real-valued

bounded continuous function f , limn→∞ E f(Xn) exists and equals E f(Z).

We can derive convergence in distribution of random vectors by computing their moments.

Lemma 2.3 (Method of moments [Bil95, Theorems 29.4, 30.1, and 30.2]). Let Xn ∈ Rd for
n ∈ N and Z ∈ Rd be random vectors such that for any q1, . . . , qd ∈ N,

E

[
d∏

i=1

Xqi
n,i

]
−→
n→∞

E

[
d∏

i=1

Zqi
i

]
.

Suppose that for all i ∈ [n], Zi has the distribution of a polynomial in Gaussian random

variable. Then Xn
d−→ Z.

We will refer to the generalized (probabilist’s) Hermite polynomials as hk( · ;σ2), where hk

is the degree-k monic orthogonal polynomial for N (0, σ2). If Zi is an independent N (0, σ2
i )

random variable for all i ∈ I, then
(∏

i∈I hki(Zi;σ
2
i )
)
k∈NI is an orthogonal basis for polyno-

mials in (Zi)i∈I with respect to the expectation over (Zi)i∈I .

The Gaussian distribution and Hermite polynomials have combinatorial interpretations
related to matchings.

Lemma 2.4. For Z ∼ N (0, σ2),

E [Zq] = |PM(q)|σ
q
2 =

{
(q − 1)!! · σ q

2 if q is even

0 if q is odd
,

where PM(q) is the set of perfect matchings on q objects and (q − 1)!! = q!
2q/2(q/2)!

.

Lemma 2.5 ([Jan97, Theorem 3.4 and Example 3.18]). For all k ≥ 0 and x ∈ R,

hk(x;σ
2) =

∑
M∈M(k)

(−1)|M |σ2|M |xk−2|M | ,

where M(k) is the set of (partial) matchings on k objects (including the empty matching and
perfect matchings).

Lemma 2.6 ([Jan97, Theorem 3.15 and Example 3.18]). For any k1, . . . , kl ≥ 0 and x ∈ R,

hk1(x;σ
2) · · ·hkℓ(x;σ

2) =
∑

M∈M(k1,...,kℓ)

hk−2|M |(x;σ
2)σ2|M | ,

where M(k1, . . . , kℓ) is the set of (partial) matchings on k = k1+ · · ·+kℓ objects divided into
ℓ blocks of sizes k1, . . . , kℓ such that no two elements from the same block are matched.
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Finally, we recall:

Lemma 2.7 (Gaussian integration by parts). Let (Z1, . . . , Zk) be a centered Gaussian vector.
Then for all smooth f : Rk → R,

E [Z1f(Z1, . . . , Zk)] =
k∑

i=1

E [Z1Zi]E
[
∂f

∂zi
(Z1, . . . , Zk)

]
.

3 The Diagram Basis

Here we give the key properties of the Fourier diagrams on a high level, delaying formal
statements and proofs to the next section.

• In Section 3.1, we give an example.

• In Section 3.2, we define the class of diagrams and describe their behavior both for
fixed n and in the limit n → ∞.

• In Section 3.3, we summarize how iterative algorithms behave asymptotically.

• In Section 3.4, we explain how the diagram basis can be derived from standard discrete
Fourier analysis.

3.1 Example of using diagrams

We show how to compute the vector A(A1⃗)2 in the diagram basis, where 1⃗ ∈ Rn denotes the
all-ones vector and the square function is applied componentwise. Calculation with diagrams
is a bit like a symbolic version of the trace method from random matrix theory [Bor19].

For simplicity, we assume in this subsection that A satisfies Assumption 2.1 with Aii = 0
for all i ∈ [n].

We will use rooted multigraphs to represent vectors.5 Multigraphs may include multi-
edges and self-loops. In our figures, the root will be drawn as a circled vertex . The
vector 1⃗ will correspond to the singleton graph with one vertex (the root): . Edges will
correspond to Aij terms.

The vector A1⃗ will be represented by the graph consisting of a single edge, with one of
the endpoints being the root:

(A1⃗)i =
n∑

j=1

Aij =
n∑

j=1
i,j distinct

Aij

≡
5Graphs with multiple roots can be used to represent matrices and tensors, although we will not need

those here.

13



where the second equality uses the assumption that A has zero diagonal. Now to apply the
square function componentwise, we can decompose:

(A1⃗)2i =
n∑

j,k=1
i,j,k distinct

AijAik +
n∑

j=1
i,j distinct

A2
ij

≡ +

Moving on, we apply A to this representation by casing on whether the new index i
matches one of the previous indices. We group terms together using the symmetry of A and
the fact that Aii = 0.

(A(A1⃗)2)i =
n∑

j,k,ℓ=1
i,j,k,ℓ distinct

AijAjkAjℓ + 2
n∑

j,k=1
i,j,k distinct

A2
ijAjk +

n∑
j,k=1

i,j,k distinct

AijA
2
jk +

n∑
j=1

i,j distinct

A3
ij

≡ +2 + +

This is the non-asymptotic Fourier diagram representation of A(A1⃗)2.

In the limit n → ∞, only some of these terms contribute to the asymptotic Fourier
diagram basis representation. Asymptotically, hanging double edges can be removed from a
diagram6, so that the third diagram in the representation above satisfies, as n → ∞,

∞
= .

The second and fourth diagrams in the representation of A(A1⃗)2 have entries on the scale
O(n−1/2) and so they will be dropped from the asymptotic diagram representation. In total,

A(A1⃗)2
∞
= + .

We will show that as n → ∞, the left diagram becomes a Gaussian vector with independent
entries of variance 2, and the right diagram becomes a Gaussian vector with independent
entries of variance 1. In fact, these 2n entries are asymptotically jointly independent. It
can be verified numerically that approximately for large n, A(A1⃗)2 matches the sum of these
two random vectors, the histogram of each vector’s entries is Gaussian, and the vectors are
approximately orthogonal.

3.2 Properties of the diagram basis

Definition 3.1. A Fourier diagram is an unlabeled undirected multigraph α = (V (α), E(α))
with a special vertex labeled which we call the root. No vertices may be isolated except for
the root. We let A be the set of all Fourier diagrams.

6To be convinced of this, the reader can think of the case where the entries of A are uniform ± 1√
n
.
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Definition 3.2 (Zα). For a Fourier diagram α ∈ A with root , define the vector Zα ∈ Rn

by

Zα,i =
∑

φ:V (α)→[n]
φ injective
φ( )=i

∏
{u,v}∈E(α)

Aφ(u)φ(v) , for all i ∈ [n] .

Among all Fourier diagrams, the ones corresponding to trees play a special role. They
will constitute the asymptotic Fourier diagram basis.

Definition 3.3 (S and T ). Let S be the set of unlabeled rooted trees such that the root has
exactly one subtree (i.e. the root has degree 1). Let T be the set of all unlabeled rooted trees
(non-empty, but allowing the singleton).

Definition 3.4 (Proper Fourier diagram). A proper Fourier diagram is a Fourier diagram
with no multiedges or self-loops (i.e. a rooted simple graph).

For proper Fourier diagrams α ∈ A, the following properties of Zα hold non-asymptotically
i.e. for arbitrary n:

(i) Zα is a multilinear polynomial in the entries of A with degree |E(α)| (or Zα = 0 when
|V (α)| > n).

(ii) Zα has the symmetry that Zα,i(A) = Zα,π(i)(π(A)) for all permutations π ∈ Sn, where
π acts on A by permuting the rows and columns simultaneously.

(iii) For each i ∈ [n], the set {Zα,i : proper Fourier diagram α ∈ A} is orthogonal with
respect to the expectation over A.

(iv) In fact, Zα is a symmetrized multilinear Fourier character (see Section 3.4). This implies
the previous properties and it shows that the proper diagrams are an orthogonal basis
for a class of symmetric functions of A.

We represent the algorithmic state as a Fourier diagram expression of the form x =∑
α∈A cαZα. To multiply together or apply algorithmic operations on a diagram expression,

we case on which indices repeat, like in the example in Section 3.1. See Lemmas A.4 and A.7
in Appendix A.2 for a formal derivation of these rules.

Now we turn to the asymptotic properties. The constant-size tree diagrams (Zτ )τ∈T
exhibit the following key properties in the limit n → ∞ and with respect to the randomness
of A.

(i) The coordinates of Zτ ∈ Rn for any τ ∈ T are asymptotically independent and identi-
cally distributed.

(ii) The random variables Zσ,1 for σ ∈ S (the tree diagrams with one subtree) are asymp-
totically independent Gaussians with variance |Aut(σ)|, where Aut(σ) are the graph
automorphisms of σ which fix the root.

15



(iii) The random variable Zτ,1 for τ ∈ T (the tree diagrams with multiple subtrees) is
asymptotically equal to the multivariate Hermite polynomial

∏
σ∈S hdσ(Zσ,1; |Aut(σ)|)

where dσ is the number of children of the root whose subtree (including the root) equals
σ ∈ S.

The remaining Fourier diagrams not in T can be understood using the further asymptotic
properties:

(iv) For any diagram α ∈ A, if α has a hanging double edge i.e. a double edge with one
non-root endpoint of degree exactly 2, letting α0 be the diagram with the hanging
double edge and hanging vertex removed, then Zα is asymptotically equal to Zα0 . For
example, the following diagrams are asymptotically equal:

∞
=

∞
=

1 ≈
n∑

j=1
i ̸=j

A2
ij ≈

n∑
j,k,ℓ,m=1

i,j,k,ℓ,m distinct

A2
ijA

2
jkA

2
kℓA

2
km

(v) For any connected α ∈ A, if removing the hanging trees of double edges from α creates
a diagram in T , then by the previous property, Zα is asymptotically equal to that
diagram. If the result is not in T , then Zα is asymptotically negligible.

(vi) The disconnected diagrams have only a minor and negligible role in the algorithms
that we consider. See Section 4.2 for the description of these random variables.

To summarize the properties, given a sum x of connected diagrams, by removing the
hanging double trees, and then removing all diagrams not in T , the expression admits an
asymptotic Fourier diagram basis representation of the form

x
∞
=
∑
τ∈T

cτZτ , (3)

for some coefficients cτ ∈ R independent of n and A. We call this the tree approximation to
x. Note that all tree diagrams have order 1 variance regardless of their size, which can be
counter-intuitive.

3.3 Asymptotic state evolution

The main appeal of the tree approximation in Eq. (3) is that when restricted to the tree-
shaped diagrams, the GFOM operations have a very simple interpretation: they implement
an idealized Gaussian dynamics which we describe now.
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The idealized GFOM moves through an “asymptotic Gaussian probability space” which
is naturally the one corresponding to the n → ∞ limit of the diagrams. Based on the
diagram classification, this consists of an infinite family of independent Gaussian vectors
(Zσ)σ∈S . However, due to symmetry, all of the coordinates follow the same dynamic, so we
can compress the representation of the dynamic down to a one-dimensional random variable
Xt which is the asymptotic distribution of each coordinate xt,i . We call Xt the asymptotic
state of xt.

For example, Approximate Message Passing (AMP) is a special type of GFOM whose
iterates are asymptotically Gaussian i.e. Xt is a Gaussian random variable for all t (in general
GFOMs, although Xt is defined in terms of Gaussians, it is not necessarily Gaussian).

With that prologue, the algorithmic operations restricted to the trees and the corre-
sponding evolution of the asymptotic state Xt are as follows. Two important operations on
a tree-shaped diagram are extending/contracting the root by one edge.

Definition 3.5 (+ and − operators). We define + : T → S and − : S → T by:

• If τ ∈ T , let τ+ be the diagram obtained by extending the root by one edge (i.e. adding
one new vertex and one edge connecting it to the root of τ , and re-rooting τ+ at this
new vertex).

• If τ ∈ S, let τ− be the diagram obtained by contracting the root by one edge (i.e.
removing the root vertex and the unique edge from it, and re-rooting τ− at the endpoint
of that edge).

Recall that the possible operations of a GFOM are either multiplying the state by A or
applying a function componentwise. The effect of these two operations on the tree-shaped
diagrams are:

• If σ ∈ S, then AZσ is asymptotically the sum of the diagrams σ+ and σ− obtained by
respectively extending and contracting the root by one edge. For example,

A × ∞
= +

If τ ∈ T \ S, then AZτ is asymptotically only the τ+ term. For example,

A × ∞
=

• From the classification of diagrams, if τ ∈ T consists of dσ copies of σ ∈ S, then∏
σ∈S

hdσ(Zσ; |Aut(σ)|)
∞
= Zτ . (4)

Therefore, to compute f(Zσ : σ ∈ S), we expand f in the Hermite polynomial basis
associated to S, and apply the rule Eq. (4) to all the terms. For example,
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These operations correspond to the following Gaussian dynamic.

Definition 3.6 (Asymptotic Gaussian space, Ω). Let (Z∞
σ )σ∈S be a set of independent cen-

tered (one-dimensional) Gaussian random variables with variances Var(Z∞
σ ) = |Aut(σ)|.

If τ ∈ T can be decomposed as dσ copies of each σ ∈ S branching from the root, we define

Z∞
τ =

∏
σ∈S

hdσ(Z
∞
σ ; |Aut(σ)|) .

We call asymptotic states the elements in the linear span of (Z∞
τ )τ∈T . We can view them

both as polynomials in the formal variables (Z∞
σ )σ∈S and as real-valued random variables.

The set of asymptotic states is denoted Ω.

Definition 3.7 (Asymptotic state). If x ∈ Rn is such that x
∞
=
∑

τ∈T cτZτ , we define the
asymptotic state of x by

X =
∑
τ∈T

cτZ
∞
τ .

The state evolution of the algorithm can now be described concisely as:

• If xt has asymptotic state Xt, then the asymptotic state of Axt is X
+
t +X−

t . Here we
extend the + and − operators linearly to sums of Zτ or Z∞

τ (let Z−
τ = (Z∞

τ )− = 0 if
τ ∈ T \ S).

• If xt−1, . . . , x0 have asymptotic states Xt−1, . . . , X0 and f is any polynomial, then the
asymptotic state of f(xt−1, . . . , x0) is f(Xt−1, . . . , X0).

3.4 Perspective: equivariant Fourier analysis

The Fourier diagrams form an orthogonal basis that can be derived in a mechanical way
using symmetrization.

We can use Fourier analysis to express a function or algorithm with respect to a natural
basis. The unsymmetrized underlying analytical space consists of functions of the n2 entries
of A. Since the entries of A are independent, the associated Fourier basis is the product basis
for the different entries. When A ∈ {−1, 1}n×n is a Rademacher random matrix, the Fourier
characters are the multilinear monomials in A. An arbitrary function f : {−1, 1}n×n → R is
then expressed as

f(A) =
∑

α⊆[n]×[n]

cα
∏

(i,j)∈α

Aij ,

18



where cα are the Fourier coefficients of f . When A is a symmetric matrix with zero diagonal,
we only need Fourier characters for the top half of A, and the basis simplifies to α ⊆

(
[n]
2

)
.

That is, the possible α can be interpreted combinatorially as graphs on the vertex set [n].

An observation that allows us to significantly simplify the representation is that many of
the Fourier coefficients are equal for Sn-equivariant algorithms. A function f : Rn×n → R is
Sn-equivariant if it satisfies f(π(A)) = f(A) or if f : Rn×n → Rn satisfies f(π(A)) = π(f(A))
where π acts on A by permuting the rows and columns simultaneously. For scalar-valued
functions, considering the action of Sn on the vertex set of the Fourier characters [n], any two
Fourier characters α, β which are in the same orbit will have the same Fourier coefficient.
Equivalently, if α and β are isomorphic as graphs, then their Fourier coefficients are the
same. By grouping together all isomorphic Fourier characters, we obtain the symmetry-
reduced representation defining the Fourier diagram basis,

f(A) =
∑

nonisomorphic α⊆([n]
2 )

cα

 ∑
injective φ:V (α)→[n]

∏
{u,v}∈α

Aφ(u)φ(v)

 .

Thus by construction, the diagrams are an orthogonal basis for symmetric low-degree
polynomials of A. We use this to derive some simple facts in Appendix A.1. Asymptotic
independence of the Gaussian diagrams can be predicted based on the fact that the diagrams
are an orthogonal basis, and orthogonal Gaussians are independent (thus we expect a set of
independent Gaussians to appear from other types of i.i.d. inputs as well).

The above discussion was for Boolean matrices with Aij ∼ {±1}. The natural general-
ization expresses polynomials in the basis of orthogonal polynomials for the entries Aij (e.g.
the Hermite polynomials when the Aij ∼ N (0, 1/n) [MW22a, Section 3.2]).

Our results show that for the first-order algorithms we consider, only the multilinear
part of the basis matters (i.e. the orthogonal polynomials which are degree 0 or 1 in each
variable): up to negligible error, we can approximate A2

ij ≈ 1
n
and Ak

ij ≈ 0 for k ≥ 3. We use
the monomial basis7 to represent higher-degree polynomials instead of higher-degree orthog-
onal polynomials in order to simplify the presentation (except for the degree-2 orthogonal
polynomial A2

ij − 1
n
which expresses some error terms).

4 Diagram Analysis of O(1) Iterations

In this section we develop tools for rigorously analyzing diagrams of constant size, cor-
responding to first-order algorithms with constantly many iterations. These proofs make
formal the intuitive ideas developed in Section 3. Longer proofs in this section are delayed
to Appendix B for readability.

• In Section 4.1, we give a rigorous definition of the asymptotic equality
∞
= .

7The monomial “basis” is a misnomer in the cases when Aij satisfies a polynomial identity such as
A2

ij = 1
n . In these cases, representation as a sum of diagrams is not unique. Our expressions should be

interpreted as giving explicit sums of diagrams.
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• In Section 4.2, we prove the classification of the asymptotic behavior of the constant-
size diagrams.

• In Section 4.3, we prove the tree approximation for the class of GFOM algorithms.

• In Section 4.4, we prove a general state evolution formula for GFOM algorithms.

4.1 Equality up to combinatorially negligible diagrams

The idea behind
∞
= is to make a purely combinatorial definition so that we can use combi-

natorial arguments on the diagrams. First, we have the following key moment bound which
estimates the magnitude in n of a diagram Zα based on combinatorial properties of α.

Definition 4.1 (I(α)). For a diagram α ∈ A, let I(α) be the subset of non-root vertices
such that every edge incident to that vertex has multiplicity ≥ 2 or is a self-loop.

Lemma 4.2. Let q ∈ N be a constant independent of n and α ∈ A be a constant-size
diagram. Then for i ∈ [n],∣∣E [Zq

α,i

]∣∣ ≤ O
(
n

q
2
(|V (α)|−1−|E(α)|+|I(α)|)

)
.

A similar norm bound for matrices is a crucial ingredient in Fourier analysis of matrix-
valued functions [AMP20]. The proof of Lemma 4.2 is in Appendix B.2.

Based on this computation, we define a combinatorially negligible diagram to be one
whose moments decay with n. Since we will be working with diagram expressions that
are linear combinations of different diagrams, the following definition also handles diagrams
rescaled by some coefficient depending on n.

Definition 4.3 (Combinatorially negligible and order 1). Let (an)n∈N be a sequence of real-
valued coefficients such that an = Θ(n−k) for some k ≥ 0 with 2k ∈ Z. Let α ∈ A be a
constant-size diagram.

1. We say that anZα is combinatorially negligible if

|V (α)| − 1− |E(α)|+ |I(α)| ≤ 2k − 1 .

For an = 0, we also say that anZα is combinatorially negligible.

2. We say that anZα has combinatorial order 1 if

|V (α)| − 1− |E(α)|+ |I(α)| = 2k .

We will only consider settings where the coefficients are small enough so that all diagram
expressions have combinatorial order at most 1 (that is, negligible or order 1).
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Definition 4.4 (
∞
=). We say that x

∞
= y if there exists real coefficients (cα)α∈A depending

on n and supported on diagrams of constant size such that

x− y =
∑
α∈A

cαZα ,

where cαZα is combinatorially negligible for all α ∈ A.

Later, we will prove results of the form x
∞
= x̂ where x is the state of an algorithm and x̂

is some asymptotic approximation of x. In order to interpret these results, we note that
∞
=

implies very strong forms of convergence of the error to 0. The proof of the following lemma
can be found in Appendix B.2.

Lemma 4.5. Suppose that A = A(n) is a sequence of random matrices satisfying Assump-

tion 2.1. If x and y are diagram expressions such that x
∞
= y, then ∥x− y∥∞ = Õ(n−1/2)

with high probability.

Next, we prove a very important property of
∞
= . The combinatorially negligible diagrams

remain combinatorially negligible after applying additional algorithmic operations.

Lemma 4.6. If x, y are diagram expressions with x
∞
= y, then

Ax
∞
= Ay .

Moreover, if x1, . . . , xt, y1, . . . , yt are diagram expressions with xi
∞
= yi for all i ∈ [t], then

f(x1, . . . , xt)
∞
= f(y1, . . . , yt) ,

for any polynomial function f : Rt → R applied componentwise.

The proof of Lemma 4.6 is in Appendix B.2. The intuitive view of this lemma is that a
diagram with a cycle still has the cycle after the algorithmic operations and thus remains
negligible. The proof in Appendix B.2 is a syntactic version.

We can also show combinatorially that the error of removing a hanging double edge from
any diagram is negligible. The proof proceeds by extending the definition of diagrams to
allow new types of residual edges that are only used in the analysis (see Appendix B.1).

Lemma 4.7. Let anZα be a term of combinatorial order at most 1 such that α has a hanging
double edge. Let α0 be α with the hanging double edge and hanging vertex removed. Then

anZα
∞
= anZα0 .

4.2 Classification of constant-size diagrams

We classify the asymptotic limits of constant-size diagrams and prove that all of their
constant-order joint moments are within O(n−1/2) of the asymptotic limit. In addition to the
vector Fourier diagrams from Definition 3.1, we will classify scalar Fourier diagrams, which
are simply unlabeled undirected multigraphs (the only difference with vector diagrams being
that they do not have a root). The notation for scalar diagrams is analogous.
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Definition 4.8 (Scalar Fourier diagrams). Let Ascalar be the set of all unlabeled undirected
multigraphs with no isolated vertices. Let Tscalar be the set of non-empty unlabeled trees.

Given a scalar Fourier diagram α ∈ Ascalar, we define Zα ∈ R by

Zα =
∑

φ:V (α)→[n]
φ injective

∏
{u,v}∈E(α)

Aφ(u)φ(v).

We allow the empty scalar Fourier diagram which represents the constant 1.

Definition 4.9 (Fscalar and F). Let Fscalar be the set of unlabeled forests with no isolated
vertices. Let F be the set of unlabeled forests such that one vertex is the special root vertex .
No vertices may be isolated except for the root.

The scalar diagrams are not normalized “correctly” by default. Zρ for ρ ∈ Fscalar has
order nc/2 where c is the number of connected components in ρ. The proper normalization
divides by nc/2 to put all the diagrams on the same scale. The notion of

∞
= and combinatorial

negligibility also extend in a natural way to scalar diagrams. See Appendix B.3 for these
definitions.

We classify the diagrams in A and Ascalar. First, the next lemma identifies which of the
diagrams are non-negligible. This lemma is for connected vector diagrams; scalar diagrams
and disconnected vector diagrams have a similar characterization in Lemma B.12.

Lemma 4.10. Let α ∈ A be a connected Fourier diagram. Then Zα is either combinatorially
negligible or combinatorially order 1. Moreover, it is combinatorially order 1 if and only if
the following four conditions hold simultaneously:

(i) Every multiedge has multiplicity 1 or 2.

(ii) There are no cycles.

(iii) The subgraph of multiplicity 1 edges is connected and contains the root if it is nonempty
(i.e. the multiplicity 2 edges consist of hanging trees).

(iv) There are no self-loops or 2-labeled edges (Appendix B.1).

Proof. By assumption, every vertex is connected to the root. With the exception of the root,
we can assign injectively one edge to every vertex in V \ I(α) and two edges to every vertex
in I(α) as follows. Run a breadth-first search from the root and assign to each vertex the
multiedge that was used to discover it. This encoding argument implies

(|V (α)| − |I(α)| − 1) + 2|I(α)| ≤ |E(α)| .

Hence Zα is combinatorially negligible or combinatorially order 1, and it is combinatorially
order 1 if and only if this inequality is an equality. This holds if and only if there are no
cycles, multiplicity >2 edges, self-loops, or 2-labeled edges in α, and the edges incident to
V (α) \ I(α) in the direction of the root all have multiplicity 1.
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As a result, the non-negligible connected diagrams in A are asymptotically equal to trees
in T after using Lemma 4.7 to remove the hanging double edges (disconnected diagrams
α ∈ A and scalar diagrams α ∈ Ascalar are likewise asymptotically equal to a forest in F or
Fscalar).

The next Theorem 4.11 completes the classification by showing that the non-negligible
diagrams in T ,F , and Fscalar are asymptotically Gaussians and Hermite polynomials. The
proof is in Appendix B.4. Also see Theorem B.18 for a version of the theorem in terms of
moments.

Theorem 4.11 (Classification). Suppose that A = A(n) is a sequence of random matrices
satisfying Assumption 2.1.

The non-negligible scalar diagrams can be classified as follows:

• If τ ∈ Tscalar, then n− 1
2Zτ

d−→ N (0, |Aut(τ)|).

• If ρ ∈ Fscalar has c connected components, then

n− c
2Zρ

∞
=

∏
τ∈Tscalar

hdτ (n
− 1

2Zτ ; |Aut(τ)|) ,

where dτ is the number of copies of τ in ρ.

The non-negligible vector diagrams can be classified as follows:

• If σ ∈ S and i ∈ [n], then Zσ,i
d−→ N (0, |Aut(σ)|).

• If τ ∈ T , then Zτ
∞
=
∏

σ∈S hdσ(Zσ; |Aut(σ)|) where dσ is the number of isomorphic
copies of σ starting from the root of τ , and the Hermite polynomial is applied compo-
nentwise.

• If α ∈ F has c floating components (connected components which are not the component
of the root), letting α be the component of the root (a vector diagram) and αfloat be

the floating part (a scalar diagram), then n− c
2Zα

∞
= n− c

2Zαfloat
Zα .

Moreover, the random variables

{Zσ,i : σ ∈ S, i ∈ [n]} ∪
{
n− 1

2Zτ : τ ∈ Tscalar

}
are asymptotically independent (Definition 4.12).

Finally, we formalize what we mean by asymptotic independence of vectors whose dimen-
sion can grow with n.

Definition 4.12 (Asymptotic independence). A family of real-valued random variables
(Xn,i)n∈N,i∈In is asymptotically independent if:

∀q ∈ N. ∃ε = ε(q) −→
n→∞

0. ∀k ∈ NIn :
∑
i∈In

ki = q.

∣∣∣∣∣E
[∏
i∈In

Xki
n,i

]
−
∏
i∈In

E
[
Xki

n,i

]∣∣∣∣∣ ≤ ε(q) .

Note that In may be infinite.
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4.3 Tree approximation of GFOMs

The class of general first-order methods is defined as follows.

Definition 4.13 (General first-order method). The input is a matrix A ∈ Rn×n. The state
of the algorithm at time t is a vector xt ∈ Rn. Initially, x0 = 1⃗. At each time t, we can
execute one of the following two operations:

1. Multiply by A (xt+1 = Axt).

2. Apply coordinatewise a polynomial8 function independent of n, ft : Rt+1 → R to
(xt, xt−1, . . . , x0) (for all i ∈ [n], xt+1,i = ft(xt,i, . . . , x0,i)).

Inductively following the rules given explicitly in Appendix A.2, we may represent the
algorithmic state xt of a GFOM in the diagram basis. Define the tree approximation x̂t to
be the analogous diagram expression obtained by performing the algorithmic operations on
only the tree diagrams, removing hanging double edges and removing the cyclic diagrams
that appear (see Definition A.8 for the formal definition).

Theorem 4.14 (Tree approximation of GFOMs). Let t ≥ 0 be a constant independent of n
and A = A(n) be a sequence of random matrices satisfying Assumption 2.1. Let xt ∈ Rn be
the state of a GFOM and let x̂t be its tree approximation. Then xt

∞
= x̂t. In particular,

∥xt − x̂t∥∞ = Õ(n−1/2) with high probability . (5)

Proof. We can prove xt
∞
= x̂t inductively. By Lemma 4.6, each of the combinatorially

negligible diagrams in xt remains combinatorially negligible at time t + 1. Meanwhile, the
combinatorially non-negligible tree diagrams in x̂t get updated to x̂t+1. The error bound
Eq. (5) follows from Lemma 4.5.

Remark 4.15. The leading order guarantee of Theorem 4.14 is best possible in general (up
to logarithmic factors). Similar but more complicated equations can be given for the lower-
order error terms in Eq. (5). For example, since the other connected diagrams with E edges
and V vertices have magnitude n(V−1−E)/2, the first lower-order term of order n−1/2 consists
of connected diagrams with exactly one cycle. The GFOM operations on this set of diagrams
describe how the error evolves at this order.

Remark 4.16. One technical caveat of our analysis is that many nonlinearities used in ap-
plications are not polynomial functions (e.g. ReLU, tanh). We note that existing polynomial
approximation arguments in the literature (see for example [MW22a, IS24]) should apply
here to prove that the tree approximation holds for GFOMs with Lipschitz denoisers ft up
to arbitrarily small 1√

n
∥ · ∥2 error. This is however strictly weaker than the guarantees of

Theorem 4.14.

8Restriction to polynomial functions is a technical assumption which is not present in the full definition.
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4.4 General state evolution

From the ideas established so far, we directly deduce state evolution for GFOM algorithms,
capturing that the coordinates of xt are asymptotically independent trajectories of an explicit
random variable Xt. Recall the definition of the asymptotic state Xt from Definition 3.7.

To state the theorem, asymptotic independence is extended from Definition 4.12 to Rt+1-
valued random variables in the natural way.

Definition 4.17 (Asymptotic independence of trajectories). A family of random variables
(Xn,i)n∈N,i∈In taking values in Rt+1 is asymptotically independent if:

∀q ∈ N. ∃ε = ε(q) −→
n→∞

0. ∀k ∈ NIn×[t+1] :
∑
i∈In

j∈[t+1]

kij = q.

∣∣∣∣∣∣E
 ∏

i∈In,j∈[t+1]

X
kij
n,i,j

−
∏
i∈In

E

 ∏
j∈[t+1]

X
kij
n,i,j

∣∣∣∣∣∣ ≤ ε(q) .

Theorem 4.18 (General state evolution). Let t be a constant and A = A(n) be a sequence
of random matrices satisfying Assumption 2.1. Let xt ∈ Rn be the state of a GFOM and let
Xt be the asymptotic state of xt. Then:

9

(i) For each i ∈ [n], (x0,i, . . . , xt,i)
d−→ (X0, . . . , Xt). Furthermore, the coordinates’ trajec-

tories {(x0,i, . . . , xt,i) : i ∈ [n]} are asymptotically independent.

(ii) 1
n

∑n
i=1 xt,i

∞
= E[Xt] and therefore,

1

n

n∑
i=1

xt,i = E[Xt] + Õ(n− 1
2 ) with high probability .

(iii) Xt satisfies the explicit recurrence defined at the end of Section 3.3.

Proof. For (i), by Lemma 2.3, it suffices to check that all of the constant-order joint moments
of xt,i converge to the joint moments of Xt. This follows from convergence of the moments
of every diagram Zα to those of Z∞

α in the diagram classification Theorem 4.11.

Part (ii) will be proven in Appendix B.5 as the following lemma.

Lemma 4.19. Let x be a vector diagram expression with asymptotic state X ∈ Ω. Then as
scalar diagrams, 1

n

∑n
i=1 xi

∞
= E [X] .

For (iii), the tree approximation xt = x̂t holds by Theorem 4.14. The asymptotic state Xt

corresponding to x̂t then satisfies the explicit recursion on trees presented in Section 3.3.

9It is natural to wonder whether (ii) can be derived as a consequence of (i) in Theorem 4.18. The answer
is a resounding no. Even given good control over the distribution of individual coordinates xt,i it is crucial
to ensure that errors do not correlate adversarially when summed. This is precisely the kind of heuristic
assumption made when using the cavity method.
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We conclude this section by working out a few lemmas which help compute asymptotic
states. We will use them in Section 5.4 to compute the state evolution of approximate
message passing.

The set of asymptotic states Ω has an inner product coming from the expectation over
the Gaussians (Z∞

σ )σ∈S . Since these random variables are independent Gaussians, the mul-
tivariate Hermite polynomials (Z∞

τ )τ∈T form an orthogonal basis of Ω with respect to this
inner product. Recall the + and − operators from Definition 3.5.

Fact 4.20. + and − are bijections between T and S which are inverses of each other and
preserve |Aut(τ)|.

A key observation is that X+ is always a centered Gaussian random variable for any
X ∈ Ω, since every resulting tree is in S.
Fact 4.21. For all X ∈ Ω, (X+)− = X and (X−)+ is the orthogonal projection of X to the
subspace spanned by S.

We deduce that + and − are adjoint operators on Ω:

Lemma 4.22. For all X, Y ∈ Ω, E [X+Y ] = E [XY −].

Proof. Since (Z∞
τ )τ∈T is a basis of the vector space Ω, it suffices to check this for each pair

of basis elements τ, ρ ∈ T . By orthogonality, E
[
Z∞

τ+Z
∞
ρ

]
is nonzero if and only if τ+ = ρ

and in this case it takes value |Aut(τ+)|. By Fact 4.20, this occurs if and only if ρ ∈ S and
τ = ρ−. Moreover, in this case the value is also |Aut(τ+)| = |Aut(τ)|, as needed.

Lemma 4.23. For all X, Y ∈ Ω, E [XY ] = E [X+Y +] and E [(X−)2] ≤ E [X2].

Proof. For the first statement, apply Lemma 4.22 on X and Y +, then use Fact 4.21. For the
second statement, apply Lemma 4.22 on X− and X to get E [(X−)+X] = E [(X−)2]. Since
(X−)+ projects away some terms from X by Fact 4.21, the left-hand side is upper bounded
by E [X2].

5 Belief Propagation, AMP, and the Cavity Method

With the tree approximation in hand, we describe how to use it to implement cavity method
reasoning about nonlinear iterative algorithms.

• In Section 5.1, we give background on the cavity method and how it can be used to
predict the asymptotic trajectory of message-passing algorithms.

• In Section 5.2, we prove the asymptotic equivalence of BP and AMP on mean-field
models (Theorem 5.1). The proof precisely follows the structure described earlier: we
reproduce a folklore physics argument in Section 5.2.1 and make it directly rigorous in
Section 5.2.2.
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• In Section 5.3, we use the same technology to prove a fundamental assumption of
the cavity method: the asymptotic independence of messages incoming at a vertex
(Theorem 5.9).

• In Section 5.4, we give a new proof of the state evolution formula for BP/AMP (The-
orem 5.10).

• In Section 5.5, we reinterpret Montanari’s algorithm for optimizing spin glass Hamil-
tonians through the lens of the asymptotic tree space.

5.1 Background on the cavity method

Belief Propagation (BP) and Approximate Message Passing (AMP) are the main class of
nonlinear iterative algorithms that are studied using physical techniques. BP is a general
tool for statistical inference on graphical models which performs exact inference when the
underlying graph is a tree. The behavior of “loopy BP” on interaction graphs with cycles is
more subtle; the cavity method can be used to predict the asymptotic dynamics of loopy BP
on mean-field models (i.e. when the underlying graphical model is dense and random).

We first explain the idea behind the cavity method on the example of the replica-
symmetric belief propagation iteration for the Sherrington–Kirkpatrick (SK) model, which
is the original setting in which the method was conceived by Mézard, Parisi, and Vira-
soro [MPV87, Chapter V]. The goal here is to estimate the marginals of the following Gibbs
distribution on x ∈ {−1, 1}n:

p(x) ∝ exp

(
βx⊤Ax+ h

n∑
i=1

xi

)
,

where A is a random symmetric matrix with i.i.d. N (0, 1/n) entries and β, h > 0 are fixed
parameters. We will focus on a particular regime of (β, h) known as the replica-symmetric
or high temperature region of the SK model.

Let mi = Ex∼p[xi]. By isolating a single coordinate i ∈ [n] and looking at the influence
of other coordinates on it, Mézard, Parisi, and Virasoro derive the cavity equations, which
are fixed-point equations approximately satisfied by mi,

mi→j = f

 n∑
k=1
k ̸=j

Aikmk→i

 , mi ≈ f

(
n∑

k=1

Aikmk→i

)
, (6)

where f(x) = tanh(βx+h) and mi→j are new variables. Algorithmically, we can think of an
iterative belief propagation algorithm that tries to compute a solution to these equations,

mt+1
i→j = f

 n∑
k=1
k ̸=j

Aikm
t
k→i

 , mt+1
i = f

(
n∑

k=1

Aikm
t
k→i

)
, (7)
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initialized at say m0
i→j = 1. This iteration occurs on a set of cavity messages mi→j for

i, j ∈ [n] which conceptually are “the belief of vertex i about its own value, disregarding j”.

The physical techniques predict the asymptotic trajectory of the messages mt
i→j and the

outputs mt
i in Eq. (7) with respect to the randomness of the matrix A. They say that mt

will have approximately independent and identically distributed entries,

mt
i ∼ f(Zt) , where Zt ∼ N (0, σ2

t ) ,

σ2
1 = 1 , σ2

t+1 = E f(Zt)
2 . (8)

A heuristic replica symmetric cavity approach for proving Eq. (8) would go as follows. We
make an independence assumption that the incoming termsmt

k→i in the non-backtracking
summation

∑n
k=1,k ̸=j Aikm

t
k→i of Eq. (7) are independent, as if the messages were coming

up from disjoint branches of a tree. By symmetry, the messages are identically distributed.
Then, we appeal to the central limit theorem to deduce

n∑
k=1
k ̸=j

Aikm
t
k→i ∼ N

(
0,E

[
(mt

k→i)
2
])

.

From here, we get that the outgoing message satisfies mt
i→j ∼ f(Zt) for Zt ∼ N (0, σ2

t ) with
σ2
t defined by the recurrence in Eq. (8). Using a similar argument, we get mt

i ∼ f(Zt).

[MPV87] also derived from Eq. (6) a simpler form of self-consistent equations involving
only the marginals themselves, known as the Thouless–Anderson–Palmer equations [TAP77],

mi ≈ f

 n∑
k=1
k ̸=i

Aikmk − β

(
1− 1

n

n∑
k=1

m2
k

)
mi

 . (9)

The subtracted term on the right-hand side in which mi re-occurs is the Onsager reaction
term. In the same way that belief propagation Eq. (7) tries to compute solutions to the cavity
equations Eq. (6), an approximate message passing algorithm can be iterated to compute
approximate solutions to Eq. (9),

mt+1
i = f

 n∑
k=1
k ̸=i

Aikm
t
k − β

(
1− 1

n

n∑
k=1

(mt
k)

2

)
mt−1

i

 . (10)

The approximate equivalence between the BP iteration Eq. (7) and the AMP iteration
Eq. (10) is a folklore cavity method argument which we elaborate next.
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5.2 Equivalence between message-passing iterations

Belief propagation. We consider BP iterations on A of the form

m0
i→j = 1 , mt

i→j = ft

 n∑
k=1
k ̸=j

Aikm
t−1
k→i, . . . ,

n∑
k=1
k ̸=j

Aikm
0
k→i, m

0
i→j

 , (11)

mt
i = f̃t

(
n∑

k=1

Aikm
t−1
k→i, . . . ,

n∑
k=1

Aikm
0
k→i, m

0
i→j

)
,

for a sequence of functions ft, f̃t : Rt+1 → R. Eq. (11) is a generalization of Eq. (7) to
iterations “with memory” i.e. that can use all the previous messages. At any timestep t,
the (mt

i→j)1≤i,j≤n are cavity messages that try to compute some information about the i-th
variable by ignoring the edge between i and j, while the (mt

i)1≤i≤n are the output of the
algorithm.

Approximate message passing. On the other side, we have an approximate message
passing (AMP) algorithm of the form

w0 = 1⃗ , wt+1 = Aft(w
t, . . . , w0)−

t∑
s=1

bs,tfs−1(w
s−1, . . . , w0) , (12)

mt = f̃t(w
t, . . . , w0) , (13)

where bs,t is defined to be the scalar quantity

bs,t =
1

n

n∑
i=1

∂ft
∂ws

(wt
i , . . . , w

0
i ) .

One practical advantage of AMP compared to BP is that is has a smaller number of messages
to track, O(n) vs O(n2).

Theorem 5.1 (Equivalence of BP and AMP). Let T ≥ 1 be a constant independent of n,

ft, f̃t : Rt+1 → R for t ≤ T be a sequence of polynomials independent of n, and A = A(n)
be a sequence of random matrices satisfying Assumption 2.1. Generate mt,BP according to
Eq. (11) and mt,AMP according to Eq. (13). Then

mt,AMP ∞
= mBP ,

so in particular, with high probability,∥∥mt,AMP −mt,BP
∥∥
∞ = Õ(n−1/2) .
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5.2.1 Heuristic derivation of Theorem 5.1

The equivalence between BP and AMP is folklore in the statistical physics community, thanks
to the following simple cavity-based reasoning. It can be found for example in the seminal
paper [DMM09, Appendix A] or the survey [ZK16, Section IV.E].

We start by rewriting the BP iteration, letting w0 = 1⃗ and wt+1
i =

∑n
k=1Aikm

t
k→i. The

output of BP is computed as

mt+1
i = f̃t+1

(
wt+1

i , . . . , w0
i

)
.

Hence it suffices to show that wt asymptotically follows the AMP iteration Eq. (12). First,
Eq. (11) can be rewritten

mt+1
i→j = ft+1

(
wt+1

i − Aijm
t
j→i, . . . , w

1
i − Aijm

0
j→i, w

0
i

)
.

Given that the entries Aij are on the scale of 1/
√
n, which we expect to be much smaller than

the magnitude of the messages, we perform a first-order Taylor approximation (the partial
derivatives are with respect to the coordinates of ft+1 and the last coordinate is ignored
because w0

i is constant):

mt+1
i→j ≈ ft+1

(
wt+1

i , . . . , w1
i , w

0
i

)
− Aij

t+1∑
s=1

ms−1
j→i

∂ft+1

∂ws

(
wt+1

i , . . . , w1
i , w

0
i

)
. (∗)

Plugging this approximation in the definition of wt+1
i ,

wt+1
i ≈

n∑
k=1

Aikft(w
t
k, . . . , w

0
k)−

n∑
k=1

A2
ik

t∑
s=1

ms−1
i→k

∂ft
∂ws

(wt
k, . . . , w

0
k)

≈
n∑

k=1

Aikft(w
t
k, . . . , w

0
k)−

n∑
k=1

1

n

t∑
s=1

fs−1(w
s−1
i , . . . , w0

i )
∂ft
∂ws

(wt
k, . . . , w

0
k) (∗∗)

=
n∑

k=1

Aikft(w
t
k, . . . , w

0
k)−

t∑
s=1

bs,tfs−1(w
s−1
i , . . . , w0

i ) .

This shows that wt+1
i approximately satisfies the AMP recursion Eq. (12), as desired.

The intuition behind Eq. (∗∗) is that because we are summing over k, we may expand
A2

ik and ms−1
i→k on the first order and replace them by averages which do not depend on k:

A2
ik ≈ E

[
A2

ik

]
=

1

n
,

ms−1
i→k = fs−1

(
ws−1

i − Aikm
t
k→i, . . . , w

1
i − Aikm

0
k→i, w

0
i

)
≈ fs−1

(
ws−1

i , . . . , w0
i

)
.

5.2.2 Diagram proof of Theorem 5.1

In fact, the previous heuristic argument can be made directly rigorous by working with the
tree approximation. It suffices to justify Eq. (∗) and Eq. (∗∗) in order to prove Theorem 5.1.
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The BP iteration takes place on mt ∈ Rn2
instead of Rn which is not captured by our

previous definitions. Most of the work below is setting up definitions to fit this iteration into
our framework. We define diagrams for vectors x ∈ Rn(n−1) whose (i, j) entry is written xi→j

(for simplicity, we assume Aii = 0 so that the messages mt
i→i can be ignored).

Definition 5.2 (Cavity diagrams). A cavity diagram is an unlabeled undirected graph α =
(V (α), E(α)) with two distinct, ordered root vertices . No vertices may be isolated except
for the roots.

For any cavity diagram α, we define Zα ∈ Rn(n−1) by

Zα,i→j =
∑

φ : V (α)→[n]
φ injective

φ( )=(i,j)

∏
{u,v}∈E(α)

Aφ(u),φ(v) ,

for any distinct i, j ∈ [n].

Below is the representation of the first iterate of Eq. (11) with cavity diagrams. In the
pictures, we draw an arrow from the first root to the second root to indicate the order. If a
(multi)edge exists in the graph between the roots, then the arrow is on the edge; otherwise
we use a dashed line to indicate that there is no edge.

m0
i→j =

n∑
k=1
k ̸=j

Aikm
0
k→i =

n∑
k=1

Aikm
0
k→i = +

Multiplying Aikm
t
k→i creates a new edge between k and i in mt

k→i . Summing over k
“unroots” the first root. A case distinction needs to be made in the summation depending
on if k = i or k = j or k ̸∈ {i, j}. The case k = i is ignored assuming that Aii = 0. The case
k = j yields the “backward step” while the remaining case k ̸= j is the “forward step”.

To apply f1, we need to multiply i → j diagrams componentwise, which is achieved
by fixing/merging the roots i, j and summing over the part outside the roots. For some
coefficients c0, c1, c2, . . . we have10

m1
i→j = f1

 n∑
k=1
k ̸=j

Aikm
0
k→i

 = c0 + c1 + c2 + · · ·

The output mt+1
i uses the non-cavity quantities

∑n
k=1Aikm

t
k→i. The cavity diagrams are

converted back to the usual diagram basis as follows.

10The exact values of the coefficients ci are not necessary to compute.

31



Claim 5.3 (Conversion of cavity diagrams). For any cavity diagram α and i ∈ [n],

n∑
j=1

AijZα,j→i = Zα′,i ,

where α′ is the diagram (in the sense of Definition 3.1) obtained from α by adding an edge
between the two roots of α and unrooting the first root.

Since the final output is computed by converting all cavity diagrams back to regular
diagrams using the previous claim, the definition of combinatorial negligibility and the

∞
=

notation can be extended to cavity diagrams. We make the following definitions.

Definition 5.4. A cavity diagram α is combinatorially negligible if the diagram α′ obtained
in Claim 5.3 is combinatorially negligible. We naturally extend the

∞
= notation to cavity

diagrams as in Definition 4.4.

Claim 5.5. Let x and x′ be in the span of the cavity diagrams such that x
∞
= x′. If we let

yi→j =
n∑

k=1
k ̸=j

Aikxk→i , y′i→j =
n∑

k=1
k ̸=j

Aikx
′
k→i ,

then y
∞
= y′.

If x1, . . . , xt, x
′
1, . . . , x

′
t are in the span of cavity diagrams, xi

∞
= x′

i for all i ∈ [n], and
f : Rt → R is a polynomial function applied componentwise, then

f(x1, . . . , xt)
∞
= f(x′

1, . . . , x
′
t) .

Claim 5.5 follows directly from Lemma 4.6.

This completes the diagrammatic description of the belief propagation algorithm. We
are now ready to rigorously justify the approximations made during the heuristic argument.

Lemma 5.6 (Eq. (∗)).

mt
i→j

∞
= ft

(
wt

i , . . . , w
0
i

)
− Aij

t∑
s=1

ms−1
j→i

∂ft
∂ws

(
wt

i , . . . , w
0
i

)
.

Proof. Since ft is a polynomial, it has an exact Taylor expansion. The terms of degree
higher than 1 in the Taylor expansion create at least 2 edges between the roots i and j. All
cavity diagrams with 2 edges between the roots are combinatorially negligible because the
unrooting operation of Claim 5.3 adds one more edge between i and j, and diagrams with
multiedges of multiplicity > 2 are combinatorially negligible (Lemma 4.10).

Lemma 5.7 (Eq. (∗∗)).

n∑
k=1

A2
ikm

s−1
i→k

∂ft
∂ws

(wt
k, . . . , w

0
k)

∞
=

1

n
fs−1(w

s−1
i , . . . , w0

i )
n∑

k=1

∂ft
∂ws

(wt
k, . . . , w

0
k) .
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Proof. First, we argue about the replacement of ms−1
i→k. We have

ms−1
i→k = fs−1

 n∑
ℓ=1
ℓ ̸=k

Aiℓm
s−2
ℓ→i, . . . ,

n∑
ℓ=1
ℓ̸=k

Aiℓm
0
ℓ→i, m

0
i→k

 .

The difference between this and fs−1(w
s−1
i , . . . , w0

i ) are the backtracking terms Aikm
r
k→i.

All terms in the entire Taylor expansion of the polynomial on the right-hand side around
ws−1

i , . . . , w0
i will introduce at least one additional factor of Aik, which combines with the A2

ik

present in the summation over k to become a negligible multiplicity > 2 edge (Lemma 4.10).
This shows that

n∑
k=1

A2
ikm

s−1
i→k

∂ft
∂ws

(wt
k, . . . , w

0
k)

∞
= fs−1(w

s−1
i , . . . , w0

i )
n∑

k=1

A2
ik

∂ft
∂ws

(wt
k, . . . , w

0
k) . (14)

Second, we argue about the replacement of A2
ik. This double edge is only non-negligible

if it is hanging (Lemma 4.10). Among the diagrams in ∂ft
∂ws (w

t
k, . . . , w

t
0) the only one which

does not attach something to k is the singleton diagram . The coefficient of this diagram
is the expected value (Corollary A.3),

E
[
∂ft
∂ws

(wt
k, . . . , w

0
k)

]
.

The expected value is equal to the empirical expectation up to negligible terms (Lemma 4.19),

E
[
∂ft
∂ws

(wt
k, . . . , w

0
k)

]
∞
=

1

n

n∑
k=1

∂ft
∂ws

(wt
k, . . . , w

0
k) .

This implies

n∑
k=1

A2
ik

∂ft
∂ws

(wt
k, . . . , w

0
k)

∞
=

1

n

n∑
k=1

∂ft
∂ws

(wt
k, . . . , w

0
k) . (15)

The desired statement follows from combining Eq. (14) and Eq. (15).

Proof of Theorem 5.1. Replace the ≈ signs in the heuristic argument from Section 5.2.1 by
∞
= and use Claim 5.5 repeatedly.

5.3 Proving the cavity assumptions

We examine the belief propagation iteration Eq. (11) more closely. The BP iterates have the
following asymptotic structure.

Lemma 5.8. mt
i→j is asymptotically equivalent to a linear combination of cavity diagrams

which have a tree hanging off of i, no edges between the roots, and nothing attached to j.
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Figure 1: Diagram representation of the cavity messages mt
i→j. Each cavity diagram in the

asymptotic cavity diagram representation of mt
i→j is a tree rooted at i.

Proof. Let α be a cavity diagram with the stated form. The vector whose (i, j)-th entry is∑n

k=1
AikZα,k→i is the sum of the diagrams which add an edge between the roots of α, that

can be of 3 types: (1) the “forward step” diagram which puts the j root as a new vertex,
(2) the “backtracking step” diagram which interchanges the first and second roots of α, and
(3) other diagrams where j intersects with a vertex from V (α) \ {i}.

All diagrams of type (3) are negligible (and stay so when applying further operations to
them), because they create a cycle of length > 2. The backtracking step in (2) is canceled by
summing over k ̸= j in the belief propagation iteration. What asymptotically remains is the
forward step (1) which again has the stated form. Additionally, componentwise functions
preserve the stated form.

Theorem 5.9. For any j ∈ [n], the incoming messages at j, {mt
i→j : i ∈ [n] \ {j}}, are

asymptotically independent (Definition 4.12).

Proof. When j is ignored, the cavity diagrams in the asymptotic representation of mt
i→j

in Lemma 5.8 are equivalent to non-cavity diagrams (replacing n by n − 1). From the
classification theorem (Theorem 4.11), these are asymptotically independent.

5.4 State evolution formula for BP/AMP

We show how to simplify the asymptotic state appearing in Theorem 4.18 for the special
case of approximate message passing. Recall the + and − operators from Section 3.3.

Theorem 5.10 (Asymptotic state for AMP). Under the same assumptions as Theorem 5.1,
the asymptotic state of (wt)t≤T satisfies the recursion

W0 = 1 , Wt+1 = ft(Wt, . . . ,W0)
+ . (16)

In particular, Wt is a centered Gaussian and for all s, t ≤ T , the covariances are

E [Ws+1Wt+1] = E [fs(Ws, . . . ,W0)ft(Wt, . . . ,W0)] .
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Combining Theorem 5.10 and part (ii) of Theorem 4.18 recovers the typical formulation of
state evolution for AMP algorithms. We note that while the formula for computing iterates
of AMP (Eq. (13)) might look mysterious at first sight, the AMP recursion in the asymptotic
space (Eq. (16)) is much easier to interpret.

We now prove Theorem 5.10. Note that Eq. (12) is not directly captured by the definition
of a GFOM because bs,t requires computing an average over coordinates. This is only a tech-
nical issue: by Lemma 4.19, empirical expectations are concentrated up to combinatorially
negligible terms. Hence, the following inductive definition of a GFOM for wt ∈ Rn and its
corresponding asymptotic state Wt is asymptotically equivalent to Eq. (12):

w0 = 1⃗ , wt+1 = Aft(wt, . . . , w0)−
t∑

s=1

E
[
∂ft
∂wt

(Wt, . . . ,W0)

]
fs−1(ws−1, . . . , w0) . (17)

The Onsager correction term in Eq. (17) will be rigorously interpreted as a backtracking
term using diagrams.

Lemma 5.11. Let W1, . . . ,Wt ∈ Ω be Gaussian (i.e. each Ws is in the span of (Z∞
σ )σ∈S).

Then for any polynomial function f : Rt → R,

f(W1, . . . ,Wt)
− =

t∑
s=1

E
[
∂f

∂Ws

(W1, . . . ,Wt)

]
W−

s .

Proof. Expand f(W1, . . . ,Wt) as

f(W1, . . . ,Wt) =
∑
σ∈S

cσZ
∞
σ +

∑
τ∈T \S

cτZ
∞
τ ,

f(W1, . . . ,Wt)
− =

∑
σ∈S

cσZ
∞
σ− ,

for some coefficients cτ ∈ R. When σ ∈ S, we have

cσ|Aut(σ)| = E [Z∞
σ f(W1, . . . ,Wt)] (orthogonality)

=
t∑

s=1

E [Z∞
σ Ws]E

[
∂f

∂Ws

(W1, . . . ,Wt)

]
(Lemma 2.7)

=
t∑

s=1

E
[
Z∞

σ−W−
s

]
E
[
∂f

∂Ws

(W1, . . . ,Wt)

]
. (Lemma 4.22)

The second expectation does not depend on σ. Summing the first expectation over σ produces
W−

s as desired.

Now we complete the proof of Theorem 5.10.

Proof of Theorem 5.10. We prove by induction on t thatWt+1 = ft(Wt, . . . ,W0)
+. For t = 0,

we have w1 = Af0(⃗1) so W1 = f0(W0)
+ and the statement holds.
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Now suppose that the statement holds for W1, . . . ,Wt for some t < T . The asymptotic
state of Aft(wt, . . . , w0) is ft(Wt, . . . ,W0)

+ + ft(Wt, . . . ,W0)
−. By the induction hypothesis

and Fact 4.21, for any s ≤ t,

W−
s = fs−1(Ws−1, . . . ,W0) .

Combining this with Lemma 5.11, we see that the asymptotic state of the Onsager correction
term equals ft(Wt, . . . ,W0)

−. This concludes the induction.

In particular, Wt+1 = ft(Wt, . . . ,W0)
+ has no constant term and is in the span of S, so

it has a centered Gaussian distribution. The covariances are, for all s, t ≤ T ,

E [Ws+1Wt+1] = E
[
fs(Ws, . . . ,W0)

+ft(Wt, . . . ,W0)
+
]
= E [fs(Ws, . . . ,W0)ft(Wt, . . . ,W0)] ,

where the last equality follows from Lemma 4.23. This completes the proof.

5.5 Montanari’s iterative AMP algorithm

A special type of approximate message passing iterations, called iterative AMP, was intro-
duced by Montanari to optimize Ising spin glass Hamiltonians [Mon19, AM20, AMS21]. Here
we reinterpret iterative AMP and its analysis in the asymptotic space.

The problem considered in [Mon19] is to optimize a degree-2 polynomial with random
coefficients over the hypercube (an average-case variant of the Max-Cut-Gain problem), i.e.
given A satisfying Assumption 2.1, find x ∈ {−1, 1}n (approximately) solving

1

n
max

x∈{−1,1}n
⟨x,Ax⟩ = 1

n
max

x∈{−1,1}n

n∑
i,j=1

Aijxixj . (18)

The value of Eq. (18) is known to concentrate around the constant 2P∗ ≈ 1.52 [Tal06, CH06].
Montanari gave an algorithm running in time nOε(1) that, with high probability over A (as
n → ∞), finds an assignment x ∈ {−1, 1}n achieving a (1 − ε)-approximation to Eq. (18).
This result is conditional on the widely believed conjecture [Mon19, Assumption 2] that the
problem exhibits no overlap gap.

Montanari’s algorithm is an AMP iteration with non-polynomial nonlinearities, although
Ivkov and Schramm [IS24, Lemma B.4] proved that it can be well-approximated by AMP
with polynomial nonlinearities.11 Iterative AMP [Mon19] uses Eq. (12) with the functions

ft(wt, . . . , w0) = wt ⊙ ut(wt−1, . . . , w0) (19)

for chosen functions ut : Rt → R applied componentwise, where ⊙ denotes componentwise
multiplication. The candidate output of the algorithm is xT =

∑T
t=1 wt⊙ut(wt−1, . . . , w0) =∑T

t=1 ft(wt, . . . , w0).

The special property of iterative AMP is that it sums up independent Gaussian vectors
wt scaled componentwise by the functions ut. The independence of the Gaussian vectors wt

11The assignment constructed by the latter iteration is not precisely Boolean but it can be rounded to
{±1}n with o(1) loss in the objective value.
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is contained in the state evolution for AMP as follows. By Theorem 5.10, the asymptotic
states Wt, Ut, Xt of wt, ut, xt satisfy U0 = W0 = 1,

Ut = ut(Wt−1, . . . ,W0) , Wt+1 = (UtWt)
+ , Xt =

t∑
s=1

UsWs .

Claim 5.12. Ut is in the span of trees in T with depth at most t− 1 and Wt is in the span
of trees in S with depth exactly t.

Proof. Arguing inductively, as componentwise functions do not increase the depth, Ut is in
the span of trees from T of depth at most t − 1. In the product UtWt, the trees of depth t
in Wt cannot be cancelled by any trees of lower depth from Ut. Therefore all trees in UtWt

and Wt+1 = (UtWt)
+ have depth exactly t and t+ 1 respectively, as needed.

Claim 5.12 provides a very clear explanation of where the independent Gaussians in
iterative AMP are coming from: the Wt have different depths, and Gaussian diagrams of
different depths are asymptotically independent Gaussian vectors.

Optimality via state evolution. The objective value achieved by the iteration can also
be computed using state evolution:

1

n
⟨xT , AxT ⟩

∞
= E

[
XT (X

+
T +X−

T )
]

(Lemma 4.19)

= 2E
[
XTX

+
T

]
(Lemma 4.22)

= 2
T∑

s,t=1

E
[
UsWs(UtWt)

+
]

= 2
T∑

s,t=1

E [UsWsWt+1]

= 2
T∑
t=2

E
[
UtW

2
t

]
(Independence of the Wt)

= 2
T∑
t=2

E [Ut]E
[
W 2

t

]
(Claim 5.12 and independence of the Wt)

This gives an asymptotic description of the iterates xt (as asymptotically independent tra-
jectories of Xt) and the objective value achieved by the algorithm (as above). We can now
try to optimize the best choice of the functions ut subject to the constraint that the output
point is Boolean. This yields the following program for the value achievable by an iteration
with T steps (selecting ut(wt−1, . . . , w0) is equivalent to selecting Ut which is measurable
with respect to Wt−1, . . . ,W0):

max 2
T∑
t=1

E [Ut]E[W 2
t ]
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s.t. Ut is measurable w.r.t. W0, . . . ,Wt−1

XT =
T∑
t=1

UtWt ∈ {−1,+1} a.s.

Note that by Claim 5.12, the trajectory XT =
∑T

t=1 UtWt is a martingale. As written, the
Boolean constraint “XT ∈ {−1, 1} a.s.” is infeasible because each step Wt is a (potentially
unbounded) Gaussian. In the actual algorithm, we make XT close to ±1 then apply a final
rounding step.

The remaining key step used by [Mon19] is to take T large in order to approach a
continuous time stochastic process dXt = UtdBt. The limiting Brownian motion only appears
if we add a constraint that E [U2

t ] = 1 so that E [W 2
t ] = E [U2

t ]E
[
W 2

t−1

]
= E

[
W 2

t−1

]
for all t.

This yields a continuous optimization problem for the best achievable value:

max 2

∫ 1

0

E [Ut] dt

s.t. (Ut)t∈[0,1] is progressively measurable w.r.t. a Brownian motion (Bt)t∈[0,1]

E
[
U2
t

]
= 1 for all t ∈ [0, 1]

X1 =

∫ 1

0

UtdBt ∈ {−1,+1} a.s.

This continuous optimization problem is convex in (Ut)t∈[0,1] and dual to an “extended
Parisi formula” for the optimal value of the SK model [AMS21, Section 4]. The remaining
important technical step is to show that this program is well-posed, and that the maximizer
of this program, which can be written in terms of the solution to the Parisi PDE, is smooth
enough that it can be discretely approximated by the limit T → ∞.

6 Analyzing poly(n) Iterations

In summary so far, we have completely described the asymptotic trajectory of first-order
algorithms for a constant number of iterations. We now discuss extensions to a number of
iterations that scales with the dimension n of the matrix.

A motivation for studying longer iterations is that for problems with a hidden planted
signal, it has been observed empirically that first-order iterations initialized at random can
learn the planted signal. However, the standard machinery is only able to prove that these
algorithms achieve recovery from an informative initialization which has positive correlation
with the planted signal. The underlying reason appears to be that “picking up” the signal
and escaping the random initialization takes ω(1) steps, which is beyond what most previous
works can handle.
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6.1 Combinatorial phase transitions

In order to show that this is a delicate question, we compute in Appendix C that some
diagrams of ω(1) size are no longer asymptotically Gaussian, breaking the classification
Theorem 4.11. Larger-degree vertices in a diagram can access high moments of the entries
of other diagrams, which will detect that these quantities are not exactly Gaussian.

However, in typical first-order algorithms, high-degree diagrams only appear in a con-
trolled way. Thus we expect that for a class of “nice” GFOMs, the Gaussian tree approxima-
tion continues to hold for many more iterations. To demonstrate this, we examine debiased
power iteration, which is the iterative algorithm

x0 = 1⃗ , xt+1 = Axt − xt−1 . (20)

Eq. (20) has a very simple tree approximation (the t-path diagram). Note that by Theo-
rem 5.1, for constantly many iterations this algorithm is asymptotically equivalent to power
iteration on the non-backtracking walk matrix, which is the algorithm

m0 = 1⃗ , mt+1 = Bmt ,

xt+1,i =
n∑

k=1

Aikmt,k→i ,

where B ∈ Rn2×n2
is the weighted non-backtracking walk matrix defined by Bi→j,k→ℓ = Akℓ

if j = k and i ̸= ℓ, and Bi→j,k→ℓ = 0 otherwise.

We distinguish several regimes of T = T (n) depending on the obstacles that arise when
trying to generalize the tree approximation for Eq. (20) to a larger number of iterations.

• When T ≪ logn
log logn

, we expect the proofs of Theorem 4.11 and Theorem 4.14 to gener-
alize with minimal changes. The total number of diagrams that arise can be bounded
by TO(T ) which is no(1) in this regime.

• When T ≈ logn
log logn

, there are TO(T ) = poly(n) many diagrams to keep track of. This
could overpower the magnitude of some cyclic diagrams, and make the naive union
bound argument fail. This barrier is also the one of previous non-asymptotic analyses
of AMP [RV18, CR23].

• When T ≪ nδ for some small constant δ > 0, we show in the next subsections that the
tree approximation of debiased power iteration still holds by a more careful accounting
of the error terms. We predict that this can be extended up to T ≪

√
n.

• When T ≈
√
n, the tree diagrams with T vertices are exponentially small in magnitude

(see Lemma A.2) and the number of non-tree diagrams starts to become overwhelm-
ingly large. At the conceptual level, random walks of length >

√
n in an n-vertex

graph are likely to collide. Therefore, it is unclear whether or not the tree diagrams
of size >

√
n are significantly different from diagrams with cycles. This threshold also

appears in recent analyses of AMP [LFW23], although it is not a barrier for their
result.
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6.2 Analyzing power iteration via combinatorial walks

For constantly many iterations of debiased power iteration, by Theorem 4.14, we know that
xt is well-approximated by the t-path diagram, denoted Zt-path. Here we prove that this
approximation holds much longer. To simplify the calculation, we assume:

Assumption 6.1. Let A be a random n× n symmetric matrix with Aii = 0 and Aij drawn

independently from the uniform distribution over
{
− 1√

n−1
, 1√

n−1

}
for all i < j.

We prove that for this iterative algorithm we can extend Theorem 4.14 to a polynomial
number of iterations, hence overcoming some obstructions mentioned in Section 6.1. A
similar argument can also show that Zt-path remain approximately independent Gaussians
for t in the same regime. Taken together, we see that the “usual” state evolution formula for
constantly many iterations continues to hold much longer, up to conjecturally

√
n iterations.

Theorem 6.2. Suppose that A = A(n) satisfies Assumption 6.1 and generate xt according
to Eq. (20). Then there exist universal constants c, δ > 0 such that for all t ≤ cnδ,

∥xt − Zt-path∥∞
a.s.−→ 0 .

To obtain the tree approximation of algorithms with poly(n) many iterations, we need to
very carefully count combinatorial factors that were neglected in Section 4. The total number
of diagrams in the unapproximated diagram expansion is very large, and furthermore, each
diagram can arise in many different ways if it has high-degree vertices. To perform the
analysis, we decompose xt in terms of walks of length t; we need to track walks instead of
diagrams so that we do not throw away additional information about high-degree vertices.

Our goal is to show that the walk without any back edge (the t-path) dominates asymp-
totically. We will proceed as in the proof of Theorem 4.11 by bounding the q-th moment
of xt − Zt-path. This moment can be represented diagrammatically using q-tuples of non-
backtracking walks with at least one back edge.

Definition 6.3. A (q, t)-traversal γ = (γ1, . . . , γq) is an ordered sequence of q walks, each of
length t and starting from the same vertex:

γi = ({ui,1 = , ui,2}, {ui,2, ui,3}, . . . , {ui,t, ui,t+1}) , for all i ∈ [q].

Each traversal γ is naturally associated to an improper diagram (V (γ), E(γ)) with V (γ) =
{ui,j : i ∈ [q], j ∈ [t]} and E(γ) = {(ui,j, ui,j+1) : i ∈ [q], j ∈ [t − 1]} (viewed as a multiset).
We use the notation Zγ = Z(V (γ),E(γ)) following Definition 3.2.

• A traversal is even if each edge appears an even number of times in
⋃

i∈[q] γi.

• A traversal is non-backtracking if every walk of the traversal is non-backtracking, i.e.
ui,j+1 ̸= ui,j−1 for all i ∈ [q] and j ∈ {2, . . . , t− 1}.

• A traversal is non-full-forward if every walk of the traversal has a back edge, namely
for all i ∈ [q], there exist j1 ̸= j2 such that ui,j1 = ui,j2.
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Let Wq
t be the set of (q, t)-traversals that are simultaneously even, non-backtracking, non-

full-forward, and have no self-loops.

Definition 6.3 is motivated by the following decomposition:

Claim 6.4. Suppose that xt is generated according to Eq. (20) and A satisfies Assump-
tion 6.1. Then,

E [(xt − Zt-path)
q] =

∑
γ∈Wq

t

E [Zγ] .

We now proceed to proving Theorem 6.2. We will bound the magnitude of E [Zγ,i] for
γ ∈ Wq

t , then count the number of traversals in Wq
t . Both bounds will depend on E

2
−V +1

(where V is the number of vertices of the traversal and E the number of edges), which
quantifies how close the traversal is to a tree of double edges.

Our first insight is that the traversals contributing to (xt−Zt-path)
q become further from

trees as q increases because each walk must have a back edge.

Lemma 6.5. For any γ ∈ Wq
t with V vertices and E edges, E

2
− V + 1 ≥ q

2
.

Proof. Assign to each vertex all the edges going into it in γ. Each non-root vertex must
have at least 2 incoming edges: the edge which explores it, and since γ is even and non-
backtracking, an edge which revisits it a second time. Since γ is non-full-forward, each γi
has a back edge; the first back edge in each γi yields an additional incoming edge for each
i (either it points to the root, which has not yet been counted, or by assumption that it is
the first back edge in γi, it cannot cover both incident edges from the first visit). We have

E ≥ 2(V − 1) + q ,

as needed.

Lemma 6.6. For any i ∈ [n] and γ ∈ Wq
t with V vertices and E edges,

|E [Zγ,i]| ≤ O
(
n−(E

2
−V+1)

)
.

Proof. Using Assumption 6.1, we can directly count

|E [Zγ,i]| ≤ O(1) · (n− 1)(n− 2) · · · (n− V + 1)

n
E
2

= O
(
nV−1−E

2

)
.

Finally, the following lemma captures the counting of traversals. Its proof is deferred to
the next subsection.

Lemma 6.7. The number of γ ∈ Wq
t with V vertices and E edges is at most

Oq(t)
6(E

2
−V+1)+2q ,

where Oq(·) hides a constant depending only on q.
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Proof of Theorem 6.2. We decompose the sum over γ ∈ Wq
t according to the value of r =

E
2
− V + 1 using Lemma 6.6 and Lemma 6.7:

E [(xt,i − Zt-path,i)
q] ≤ Oq(t)

2q
∑
r≥ q

2

Oq(t)
6rn−r .

If t satisfies t ≤ cnδ with 0 < δ < 1/6, the sum is a geometrically decreasing series and
therefore it is bounded by the first term which is Oq(t

5qn− q
2 ). Under the condition δ < 1/10,

for q being a large enough integer we obtain for some ε > 0,

E [(xt,i − Zt-path,i)
q] ≤ O(1/n2+ε) .

This is enough to imply that ∥xt−Zt-path∥∞
a.s.−→ 0 by a union bound over the n coordinates,

then Markov’s inequality and the Borel-Cantelli lemma.

6.3 Counting combinatorial walks

Our goal here is to prove Lemma 6.7.

In the extreme case V ≈ E
2
where the moment bound Lemma 6.6 is the weakest, typical

traversals γ ∈ Wq
t look like trees of double edges with a constant number of back edges. In

this regime, most vertices will have degree exactly 4. Following this intuition, our encoding
will proceed by compressing the long paths of degree-4 vertices connected by double edges.

Definition 6.8. For γ ∈ Wq
t , let γc be the traversal obtained by replacing all maximally long

paths of degree-4 vertices in γ by a single special marked edge between the endpoints of the
paths, and removing the internal vertices of the path. (The paths should be broken at the root
so that it is not removed.)

Note that these operations can create self-loops in γc.

Lemma 6.9. For any γ ∈ Wq
t ,

|E(γc)| ≤ 3|E(γ)| − 6(|V (γ)| − 1) + 2q .

Proof. For k ∈ N, let Vk(γ) be the set of non-root vertices of γ of degree exactly k. Since γ
is an even traversal, we get by double counting the number of edges in γ

2|V2(γ)|+ 4|V4(γ)|+ 6
(
|V (γ)| − |V2(γ)| − |V4(γ)| − 1

)
≤ 2|E(γ)| .

Moreover, the number of edges removed during the compression is 2|V4(γ)|. This means that

|E(γ)| − |E(γc)| = 2|V4(γ)| ≥ 6(|V (γ)| − 1)− 4|V2(γ)| − 2|E(γ)| .

Finally, since γ is non-backtracking, non-root degree-2 vertices can only be created in γ by
pairing endpoints of the walks, so that |V2(γ)| ≤ q/2. The desired inequality immediately
follows.
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We are now ready to prove Lemma 6.7.

Proof of Lemma 6.7. We encode a traversal γ ∈ Wq
t as follows:

1. We first encode γc. We write down the sequence of vertices of each walk and indicate
whether each step should be the first step of a marked edge (Definition 6.8). Every
time we traverse a marked edge for the second time, instead of recording the next
vertex of the walk, we record the identifier of the marked edge. We also add a single
bit of information to each edge to indicate whether it is the last edge of its walk. The
target space of the encoding has size O(|E(γc)|)|E(γc)|.

2. We then expand the marked edges in γc of which there are at most |E(γc)|/2. For
each marked edge, we write down the length of the path that it replaced. This can
be encoded using “stars and bars”. Initially allocating 2 edges to each marked edge,
there are at most

(
E

|E(γc)|/2

)
such objects.

We claim that this encoding allows to reconstruct γ, and its length can be bounded by

O(|E(γc)|)|E(γc)|
(

E

|E(γc)|/2

)
≤ O(|E(γc)|)|E(γc)|O

(
E

|E(γc)|

)|E(γc)|/2

= Oq(t)
|E(γc)| .

The proof follows after plugging in the bound of Lemma 6.9.
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A Non-asymptotic Diagram Analysis

A.1 Fourier analytic properties

In Definition 3.2, for a proper α ∈ A (a graph instead of a multigraph), Zα has entries which
are homogeneous multilinear polynomials in the entries of the matrix A. The next lemma
shows that the proper diagrams with size at most n form an orthogonal basis of symmetric
polynomials in A with respect to the expectation over A.

Lemma A.1. For all i, j ∈ [n] and distinct proper diagrams α, β ∈ A, E [Zα,iZβ,j] = 0.

Proof. For each distinct S, T ⊆
(
[n]
2

)
, the independence and centeredness of the off-diagonal

entries of A proves that

E

 ∏
{i,j}∈S

Aij

∏
{k,ℓ}∈T

Akℓ

 = 0 .
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Two distinct diagrams sum over distinct sets of multilinear monomials, so this orthogonality
extends to diagrams.

The diagrams are not normalized for that inner product, but their variance can be esti-
mated as follows:

Lemma A.2. For all i ∈ [n] and proper α ∈ A \ { } we have E [Zα,i] = 0 and

E
[
Z2

α,i

]
= |Aut(α)| · (n− 1)(n− 2) · · · (n− |V (α)|+ 1)

n|E(α)|

=
n→∞

|Aut(α)| · n|V (α)|−1−|E(α)|(1 + o(1)) ,

where the last estimate holds when |V (α)| = o(
√
n).

Proof. When α is proper, Zα,i is a multilinear polynomial with zero constant coefficient, and
so it has expectation 0. For the second moment, we have

E
[
Z2

α,i

]
=

∑
injective φ1:V (α)→[n]

φ1( )=i

∑
injective φ2:V (α)→[n]

φ2( )=i

E

 ∏
{u,v}∈E(α)

Aφ1(u)φ1(v)Aφ2(u)φ2(v)

 .

Since E [Ajk] = 0 for j ̸= k, the only terms with nonzero expectation have each Ajk occurring
at least twice. As φ1 are φ2 are injective, each Ajk can only occur at most twice. Therefore, if
we fix φ1 the embeddings φ2 that contribute a nonzero value are exactly graph isomorphisms
onto im(φ1). The total number of choices for φ1 and φ2 is (n−1) · · · (n−|V (α)|+1)·|Aut(α)|
and the expectation of a nonzero term is∏

{j,k}∈E(α)

E
[
A2

jk

]
=

1

n|E(α)| .

This completes the proof of the first part of the statement. Under the further assumption
|V (α)| = o(

√
n), the falling factorial can then be estimated as∣∣∣∣log((n− 1) . . . (n− |V (α)|+ 1)

n|V (α)|−1

)∣∣∣∣ ≤ |V (α)|−1∑
i=1

∣∣∣∣log(1− i

n

)∣∣∣∣
≤

|V (α)|−1∑
i=1

i

n
−→
n→∞

0 .

This implies that (n− 1) . . . (n− |V (α)|+ 1) = (1 + o(1))n|V (α)|−1, as desired.

We can already see from the previous lemma that if α ∈ T is a tree, then the variance of
Zα,i is Θ(1), whereas if α is a connected graph with a cycle, then the variance of Zα,i is o(1).

We will use orthogonality repeatedly in the sequel through the following direct conse-
quence of Lemma A.1 and Lemma A.2:

49



Corollary A.3. Let x =
∑

proper α∈A cαZα. Then for any τ ∈ T ,

E [xiZτ,i] = cτ E
[
Z2

τ,i

]
=

n→∞
cτ |Aut(τ)|+ o(1) ,

where the second estimate holds for |V (τ)| = o(
√
n).

In particular, E [x] = c 1⃗ where c is the coefficient of the singleton diagram.

A.2 Operations on the diagram representation

We compute the diagrammatic effect of multiplying by A.

Lemma A.4. For all diagrams α ∈ A,

AZα = Zα+ +
∑

v∈V (α)

Zcontract v and in α+ .

Proof.

(AZα)i =
n∑

j=1

Aij

∑
φ:V (α)→[n]
φ injective
φ( )=j

∏
{u,v}∈E(α)

Aφ(u)φ(v)

=
∑

φ:V (α)→[n]
φ injective

Ai,φ( )

∏
{u,v}∈E(α)

Aφ(u)φ(v) .

The sum over φ can be partitioned based on whether i ∈ im(φ). The terms with i ̸∈ im(φ)
sum to Zα+ . The terms with i ∈ im(φ) sum to the different contractions of α+ based on
which vertex of α is labeled i.

Switching to componentwise operations, the combinatorics is captured by the concepts
of intersection patterns and intersection diagrams.

Definition A.5 (Intersection pattern, P ∈ P(α1, . . . , αk)). Let α1, . . . , αk ∈ A. Let α be the
diagram obtained by putting all αi at the same root. An intersection pattern P is a partition
of V (α) \ { } such that for all i ∈ [k] and v, w ∈ V (αi) \ { }, v and w are not in the same
block of the partition.

Let P(α1, . . . , αk) be the set of intersection patterns between α1, . . . , αk.

Definition A.6 (Intersection diagram, αP ). Let α ∈ A. Given a partition P of V (α), let
αP be the diagram obtained by contracting each block of P into a single vertex. Keep all
edges (hence there may be new multiedges or self-loops).

By casing on which vertices are equal among the embeddings of α1, . . . , αk as in the proof
of Lemma A.4, we have:

Lemma A.7. For α1, . . . , αk ∈ A, the componentwise product of Zα1 , . . . , Zαk
is

Zα1 ⊙ · · · ⊙ Zαk
=

∑
P∈P(α1,...,αk)

ZαP
.
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Next we consider these operations when restricted to the tree diagrams. Suppose we
start from τ ∈ T and compute AZτ . Which diagrams appearing in Lemma A.4 are non-
negligible? Following the asymptotic classification of non-negligible diagrams (Section 4.2),
it is only τ+ and τ− (the latter only appears if the root of τ has degree 1, in which case τ− is
the result of intersecting and the child of the root then removing a double edge). Hence
we conclude

AZτ
∞
=

{
Zτ+ + Zτ− if τ ∈ S
Zτ+ if τ ∈ T \ S .

Given tree diagrams τ1, . . . , τk ∈ T , the asymptotically non-negligible terms in the prod-
uct in Lemma A.7 are identified as follows. Let τ̃ be a non-negligible diagram appearing
in the result, i.e. τ̃ is a tree with hanging trees of double edges. Since τ1, . . . , τk are con-
nected, the hanging double trees must hang off the root vertex of τ̃ in order to avoid cycles.
Additionally, they must arise as the overlap of two complete copies of the tree. Thus the
asymptotically non-negligible terms are the partial matchings between isomorphic branches
of the roots of the τi. Two copies of a branch σ ∈ S can be matched up into a tree of double
edges in |Aut(σ)| ways.

Based on these observations, the tree approximation is formally defined to be the result
of applying the algorithmic operations and removing the non-trees at each step.

Definition A.8 (Tree approximation of a GFOM, x̂t). Let xt ∈ Rn be the state of a GFOM.
We recursively define the tree approximation of xt, denoted by x̂t, to be a diagram expression
in the span of (Zτ )τ∈T .

1. Initially, x̂0 = Z .

2. If xt+1 = Axt, define x̂t+1 = (x̂t)
+ + (x̂t)

−.

3. If xt+1 = ft(xt, . . . , x0) coordinatewise for some polynomial ft : Rt → R, define x̂t+1

by applying each monomial of ft to x̂t, . . . , x̂0 separately and summing the results. To
apply a monomial on x̂t, . . . , x̂0, expand each x̂s in the diagram basis and sum all the
cross product terms. The result of multiplying q tree diagrams τ1, . . . , τq ∈ T is∑

M∈M(τ1,...,τq)

cMZτM ,

where:

(a) M(τ1, . . . , τq) is the set of (partial) matchings of isomorphic branches of τ1, . . . , τq
such that no two branches from the same τi are matched.

(b) τM is the tree obtained by merging the roots of τ1, . . . , τq and removing all subtrees
matched in M .

(c) cM =
∏

{σ,σ′}∈M |Aut(σ)|.
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A.3 Repeated-label diagram basis

An alternative basis for the diagram space consists of diagrams in which labels are allowed
to repeat. This representation has been defined by Ivkov and Schramm [IS24, Section 3.5].

Definition A.9 (Z̃α). For a diagram α with root , define Z̃α ∈ Rn by

Z̃α,i =
∑

φ:V (α)→[n]
φ( )=i

∏
{u,v}∈E(α)

Aφ(u)φ(v) .

The only difference between Z̃α and Zα is that the embedding φ must be injective in Zα.
To perform the change of basis in one direction is as easy as replacing Z̃α by a sum of Zα

based on which labels are repeated.

Lemma A.10. For α ∈ A,

Z̃α =
∑

P∈P(α)

ZαP

where P(α) is the set of partitions of V (α) and αP contracts the blocks of P (Definition A.6).

Proof. We have

Z̃α,i =
∑

φ:V (α)→[n]
φ( )=i

∏
{u,v}∈E(α)

Aφ(u)φ(v) .

The sum over φ can be divided based on which vertices are assigned the same label. The
terms with a given partition P of V (α) are exactly ZαP ,i.

The algorithmic operations are simpler to compute in this basis, although the asymptotic
tree approximation does not seem to be easily visible in this basis (the tree diagrams do not
span the same space, and a diagram which is an even cycle has entries with magnitude Θ(1)

in Z̃α but negligible entries in Zα).

Given the current representation xt =
∑

τ∈T cτ Z̃τ the operations have the following effects

on the Z̃τ (non-asymptotically i.e. without taking the limit n → ∞).

(i) Multiplying by A extends the root.

We have AZ̃α = Z̃α+ where α+ is obtained by extending the root by one edge.

(ii) Componentwise products graft trees together.

To componentwise multiply Z̃α and Z̃β, we “graft” α and β by merging their roots.

Example A.11. Consider the example,

xt+1 = (Axt)
2 x0 = 1⃗

where 1⃗ ∈ Rn is the all-ones vector and the square function is applied componentwise. The
first few iterations are,
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x0 = 1⃗ x1 = (A1⃗)2 x2 = (A(A1⃗)2)2

x0,i = 1 x1,i =
n∑

j1,j2=1

Aij1Aij2 x2,i =
n∑

j1,j2=1

n∑
k1,k2=1

n∑
ℓ1,ℓ2=1

Aij1Aij2Aj1k1Aj1ℓ1Aj2k2Aj2ℓ2

B Omitted Proofs

B.1 Removing hanging double edges

In order to implement the removal of hanging double edges, we introduce an additional
diagrammatic construct to track the error, 2-labeled edges. These terms are equal to zero
when A is a Rademacher matrix and it is recommended to ignore them on a first read.

Definition B.1 (Edge-labeled diagram). An edge-labeled diagram is a diagram in which
some of the edges are labeled “2”.

We let E(α) denote the entire multiset of labeled and unlabeled edges of α, E2(α) the
multiset of 2-labeled edges and E1(α) = E \ E2(α) the multiset of non-labeled edges.

We use the convention that |E(α)| counts each 2-labeled edge twice, so that |E(α)| con-
tinues to equal the degree of the polynomial Zα,i.

Definition B.2 (Edge-labeled Zα). For an edge-labeled diagram α, we define Zα ∈ Rn by

Zα,i =
∑

injective φ:V (α)→[n]
φ( )=i

∏
{u,v}∈E1(α)

Aφ(u)φ(v)

∏
{u,v}∈E2(α)

(
A2

φ(u)φ(v) −
1

n

)
.

The set of diagrams A is extended to allow diagrams which may have 2-labeled edges.
The definition of I(α) from Definition 4.1 must also be updated to incorporate labeled edges
(because a labeled edge is mean-0, it is treated like a single edge).

Definition B.3 (Updated definition of I(α)). For a diagram α ∈ A, let I(α) be the subset
of non-root vertices such that every edge incident to that vertex has multiplicity ≥ 2 or is a
self-loop, treating 2-labeled edges as if they were normal edges.

The following is an exact decomposition for removing hanging double edges.

Lemma B.4. Let α ∈ A be a diagram with a hanging (unlabeled) double edge. Let α0 be α
with both the hanging double edge and corresponding hanging vertex removed, and α2 be α
with the hanging double edge replaced by a single 2-labeled edge. Then,

Zα = Zα0 −
|V (α)| − 1

n
· Zα0 + Zα2 .
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Proof. We write:

Zα,i =
∑

injective φ:V (α)→[n]
φ( )=i

A2
u,v

∏
{x,y}∈E(α)\{{u,v},{u,v}}

Aφ(x)φ(y)

= Zα2,i +
1

n

∑
injective φ:V (α)→[n]

φ( )=i

∏
{x,y}∈E(α)\{{u,v},{u,v}}

Aφ(x)φ(y)

= Zα2,i +
n− |V (α)|+ 1

n
· Zα0,i = Zα0,i −

|V (α)| − 1

n
Zα0,i + Zα2,i .

The additional n− |V (α)|+ 1 scaling factor comes from removing the hanging vertex.

B.2 Omitted proofs for Section 4.1

We prove a more specific version of Lemma 4.2.

Lemma B.5. Let q ∈ N, α ∈ A, and i ∈ [n]. Then,∣∣E [Zq
α,i

]∣∣ ≤ Mq|E(α)|2
q|E(α)|(q|V (α)|)q|V (α)| · n

q
2
(|V (α)|−1−|E(α)|+|I(α)|) ,

where Mk is a bound on the k-th moment of the entries of A (recall the notations of As-
sumption 2.1),

Mk = max

(
E

X∼µ

[
|X|k

]
, E

X∼µ0

[
|X|k

])
.

When q and |V (α)| are O(1), the overall bound reduces to∣∣E [Zq
α,i

]∣∣ ≤ O
(
n

q
2
(|V (α)|−1−|E(α)|+|I(α)|)

)
.

Proof. We expand E
[
Zq

α,i

]
as

∑
injective φ1,...,φq :V (α)→[n]

φ1( )=···=φq( )=i

E

 q∏
p=1

 ∏
{u,v}∈E1(α)

Aφp(u)φp(v)

 ∏
{u,v}∈E2(α)

(
A2

φp(u)φp(v) −
1

n

) .

This is a polynomial of degree q|E(α)| in A (by convention every 2-labeled edge contributes
2 to |E(α)|). We first estimate the magnitude of any summand of the sum over φ1, . . . , φq

with nonzero expectation. Each such summand can be decomposed into 2q|E2(α)| terms by
expanding out12 the A2

ij− 1
n
. This leaves monomials in the entries of A of total degree at most

q|E(α)|. We bound the expected value of each of these monomials byMq|E(α)|n
−q|E(α)|/2 using

Hölder’s inequality. This shows that any nonzero term in the summation has magnitude at
most 2q|E2(α)|Mq|E(α)|n

−q|E(α)|/2.

To bound the number of nonzero terms, we observe that every edge Ajk for j ̸= k must
occur zero times or at least twice in order to have nonzero expectation (the self-loops Ajj

12The factor 2q|E2(α)| may be removed with a tighter argument.
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can occur any number of times, and the 2-labeled edges A2
jk − 1

n
must overlap at least one

additional edge in order to have nonzero expectation). Each vertex in V (α) \ I(α) \ { }
is incident to an edge of multiplicity 1 or a 2-labeled edge, and so it must occur in at least
two embeddings in order for that edge Ajk to overlap and not make the expectation 0.
This implies that the number of distinct non-root vertices among the embeddings is at most
q (|V (α)| − 1 + |I(α)|) /2 where the −1 is used to avoid counting the root.

Hence, there are at most nq(|V (α)|−1+|I(α)|)/2 ways to choose the entire image im(φ1) ∪
. . . ∪ im(φq). Once this is fixed, there are at most (q|V (α)|)q|V (α)| q-tuples of embeddings
that map to these vertices. We conclude by combining the bound on the number of nonzero
terms and the bound on the magnitude of each of these terms.

Lemma 4.5. Suppose that A = A(n) is a sequence of random matrices satisfying Assump-

tion 2.1. If x and y are diagram expressions such that x
∞
= y, then ∥x− y∥∞ = Õ(n−1/2)

with high probability.

Proof. By assumption, x− y is a sum of combinatorially negligible terms. We first focus on
a single one of them, say anZα. For any ε > 0 , q ∈ N and i ∈ [n], we have

Pr (|anZα,i| ≥ ε) ≤ E |anZα,i|q

εq
(Markov’s inequality)

≤ 1

εq
Mq|E(α)|2

q|E(α)|(q|V (α)|)q|V (α)| · n− q
2 (Lemma B.5)

≤ 1

εq
(q|E(α)|)O(q)2q|E(α)|(q|V (α)|)q|V (α)| · n− q

2 (subgaussianity of Aij)

= exp
(
O(q log q)− q

2
log n+ q log(1/ε)

)
.

Picking q = log n and ε = qCn−1/2 and taking the constant C large enough we can make the
probability an arbitrarily small inverse polynomial in n. Then we take a union bound over
all i ∈ [n] and all combinatorially negligible term appearing in x − y (there are constantly
many such terms by definition).

Lemma 4.6. If x, y are diagram expressions with x
∞
= y, then

Ax
∞
= Ay .

Moreover, if x1, . . . , xt, y1, . . . , yt are diagram expressions with xi
∞
= yi for all i ∈ [t], then

f(x1, . . . , xt)
∞
= f(y1, . . . , yt) ,

for any polynomial function f : Rt → R applied componentwise.

Proof. It suffices to prove that for a combinatorially negligible term n−kZα:

(i) All terms in the diagram representation of n−kAZα are combinatorially negligible.

(ii) Let n−ℓZβ be any term of combinatorial order 1 or combinatorially negligible. Then
all terms in the diagram representation of the componentwise product n−(k+ℓ)Zα ⊙ Zβ

are combinatorially negligible, where ⊙ is the componentwise product.
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For (i), the diagram representation of AZα is given by Lemma A.4. In the term α+

without intersections,

|V (α+)| = |V (α)|+ 1 , |I(α+)| = |I(α)| , |E(α+)| = |E(α)|+ 1 .

From this we can check that n−kZα+ is still combinatorially negligible.

In a term β corresponding to an intersection between the new root and a vertex of α,

|V (β)| = |V (α)| , |I(β)| ≤ |I(α)|+ 1 , |E(β)| = |E(α)|+ 1 .

The second inequality follows from the observation that the only vertices from α whose
neighborhood structure can be affected by the intersection are the root of α (which does
not contribute to |I(α)|) and the intersected vertex. Hence, n−kZβ is also combinatorially
negligible.

For (ii), the diagram representation of Zα⊙Zβ is given by Lemma A.7. Fix an intersection
pattern P ∈ P(α, β) that has b blocks and denote by γ the resulting diagram. Then,

|V (γ)| = b+ 1 ,

|E(γ)| = |E(α)|+ |E(β)| ,
|I(γ)| ≤ |I(α)|+ |I(β)|+ |V (α)|+ |V (β)| − b− 2 .

The last inequality is proven by observing that for a non-root vertex that is neither in I(α)
nor I(β) to contribute to I(γ), it must intersect another vertex. Moreover, there are at most
|V (α)|+ |V (β)| − b− 2 intersected non-root vertices in γ.

Putting everything together,

|V (γ)| − 1− |E(γ)|+ |I(γ)|
≤ |V (α)| − 1− |E(α)|+ |I(α)|+ |V (β)| − 1− |E(β)|+ |I(β)|
< 2(k + l) ,

since n−kZα is combinatorially negligible and n−ℓZβ is at most order 1. This concludes the
proof.

Using the 2-labeled edges introduced in Appendix B.1, we can implement the removal of
hanging double edges.

Lemma 4.7. Let anZα be a term of combinatorial order at most 1 such that α has a hanging
double edge. Let α0 be α with the hanging double edge and hanging vertex removed. Then

anZα
∞
= anZα0 .

Proof. Starting from the decomposition of Lemma B.4,

anZα = anZα0 − an
|V (α)| − 1

n
Zα0 + anZα2 ,

we claim that the first term is combinatorially order 1, and the second and third terms are
combinatorially negligible. Comparing α0 to α, two edges and one vertex in I(α) are removed.
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This does not change the combinatorial order. The second term scales down by n and this
becomes negligible (by assumption |V (α)| is constant). In the third term, |I(α2)| < |I(α)| to
take into account the hanging vertex, while |V (α)| = |V (α2)| and |E(α)| = |E(α2)| remain
unchanged, making the term negligible. We remind the reader that |E(α)| = |E(α2)| because
|E(α2)| counts 2-labeled edges twice.

Definition 4.3 includes the coefficient an in the definition in order to incorporate factors
of 1

n
on some error terms such as those in the proof above.

B.3 Scalar diagrams

We collect the properties of scalar diagrams (Definition 4.8) which naturally generalize those
of vector diagrams. We omit the proofs of the results in this section, as they are direct
modifications of their vector analogs.

First, the scalar diagrams are an orthogonal basis for scalar functions of A.

Lemma B.6. For any proper α ∈ Ascalar:

• For any proper β ∈ Ascalar such that β ̸= α, E [ZαZβ] = 0.

• E [Zα] = 0 if α is not a singleton.

• The second moment of Zα is

E
[
Z2

α

]
= |Aut(α)| · n(n− 1) · · · (n− |V (α)|+ 1)

n|E(α)|

=
n→∞

|Aut(α)| · n|V (α)|−|E(α)|(1 + o(1)) ,

where the last estimate holds whenever |V (α)| = o(
√
n).

Proof. Analogous to Lemma A.1 and Lemma A.2.

When scalar and vector diagrams are multiplied together, the result can be expressed
in terms of diagrams by extending the notion of intersection patterns P(α1, . . . , αk) (Defi-
nition A.5) and intersection diagrams (Definition A.6) to allow scalar and vector diagrams
simultaneously. The “unintersected” diagram consists of adding all the scalar diagrams as
floating components to the vector diagrams, which are put at the same root. Intersection
patterns are partitions of this vertex set such that no two vertices from the same diagram
are matched.

Lemma B.7. Let α1, . . . , αk be either scalar or vector diagrams. Then

Zα1 · · ·Zαk
=

∑
P∈P(α1,...,αk)

ZαP
,

where the product is componentwise for the vector diagrams.
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Proof. Analogous to Lemma A.7.

We define I(α) for scalar diagrams exactly as in Definition 4.1.

Lemma B.8. Let q ∈ N, α ∈ Ascalar, and i ∈ [n]. Then,

|E [Zq
α]| ≤ Mq|E(α)|2

q|E(α)|(q|V (α)|)q|V (α)| · n
q
2
(|V (α)|−|E(α)|+|I(α)|) ,

where Mk is defined as in Lemma B.5. When q and |V (α)| are O(1), this reduces to

|E [Zq
α]| ≤ O

(
n

q
2
(|V (α)|−|E(α)|+|I(α)|)

)
.

Proof. Analogous to Lemma B.5.

Definition B.9 (Combinatorially negligible and order 1 scalar). Let (an)n∈N be a sequence
of real-valued coefficients with an = Θ(n−k), where k ≥ 0 is such that 2k ∈ Z. Let α ∈ Ascalar

be a scalar diagram.

• We say that anZα is combinatorially negligible if

|V (α)| − |E(α)|+ |I(α)| ≤ 2k − 1 .

• We say that anZα has combinatorial order 1 if

|V (α)| − |E(α)|+ |I(α)| = 2k .

We define
∞
= for scalar diagram expressions exactly as in Definition 4.4.

Lemma B.10. Let x and y be scalar diagram expressions with x
∞
= y. Then |x − y| =

Õ(n−1/2) with high probability.

Proof. Analogous to Lemma 4.5.

Lemma B.11. Let anZα be a combinatorially negligible scalar term. Let bnZβ be any scalar
or vector term of combinatorial order at most 1. Then all terms in the product anbnZαZβ

are combinatorially negligible.

Proof. Analogous to Lemma 4.6.

In Lemma 4.10, we characterized the connected vector diagrams which are combinatori-
ally order 1. We now similarly characterize the order 1 scalar diagrams.

Lemma B.12. Let α ∈ Ascalar be a scalar diagram with c connected components, cI of which
contain only vertices in I(α). Then n−(c+cI)/2Zα is combinatorially negligible or combinato-
rially order 1, and it is combinatorially order 1 if and only if the following conditions hold
simultaneously:

(i) Every multiedge has multiplicity 1 or 2.
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(ii) There are no cycles.

(iii) In each component, the subgraph of multiplicity 1 edges is empty or a connected graph
(i.e. the multiplicity 2 edges consist of hanging trees)

(iv) There are no self-loops or 2-labeled edges (Appendix B.1).

Proof. We proceed as in the proof of Lemma 4.10. In each connected component C containing
at least one vertex s ∈ V (α) \ I(α), we run a breadth-first search from s, assigning the
multiedges used to explore a vertex to that vertex. This assigns at least one edge to every
vertex in C \{s}, and at least two edges to every vertex in I(α)∩C. This encoding argument
shows that

2|I(α) ∩ C|+ |(V (α) \ I(α)) ∩ C| − 1 ≤ |E(C)| , (21)

where E(C) denotes the set of edges in the connected component C.

In each connected component C composed only of vertices in I(α), we run a breadth-first
search from an arbitrary vertex, and obtain

2(|I(α) ∩ C| − 1) = |V (α) ∩ C|+ |I(α) ∩ C| − 2 ≤ |E(C)| . (22)

Summing Eq. (21) and Eq. (22) over all connected components, we obtain

|V (α)| − |E(α)|+ |I(α)| ≤ (c− cI) + 2cI = c+ cI .

This shows that n−(c+cI)/2Zα is combinatorially negligible or combinatorially order 1, and it
is combinatorially order 1 if and only if equality holds in the argument. This happens if and
only if there is no cycle, multiplicity >2 edges, self-loops, or 2-labeled edges anywhere; and
if the graph induced by the multiplicity 1 multiedges is connected.

With this result in hand, we can now characterize the order-1 vector diagrams with
several connected components:

Corollary B.13. Let α ∈ A be a vector diagram with c floating components, cI of which
consist only of vertices in I(α). Then n−(c+cI)/2Zα is combinatorially order 1 if and only
if both the floating components (viewed as one scalar diagram) scaled by n−(c+cI)/2 and the
component of the root are combinatorially order 1.

Proof. Definition 4.3 sums across the root and floating components, so we may apply both
Lemma 4.10 and Lemma B.12.

B.4 Classification of diagrams

Lemma B.14. For all σ ∈ S and i ∈ [n], Zσ,i
d−→ N (0, |Aut(σ)|). Similarly, for all

τ ∈ Tscalar, n
− 1

2Zτ
d−→ N (0, |Aut(τ)|).
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Proof. We prove that the moments E
[
Zq

σ,i

]
match the Gaussian moments and use Lemma 2.3.

Let q ∈ N be a constant independent of n. First, we expand the product Zq
σ,i in the

diagram basis using Lemma A.7. Using Lemma 4.10, the only combinatorially order 1 terms
occur when there are no cycles, all multiedges have multiplicity 1 or 2, and the multiplicity
2 edges form hanging trees. Any term with an edge of multiplicity 1 disappears when we
take the expectation E

[
Zq

σ,i

]
, while the diagrams which are entirely hanging trees are equal

to up to combinatorially negligible terms (Lemma 4.7). Further, has expectation 1,
and by Lemma B.5 each of the combinatorially negligible terms has expectation O(n−1/2).
Thus, E

[
Zq

σ,i

]
equals the number of ways to create hanging trees of double edges, up to a

term that converges to 0 as n → ∞.

For each of the q copies of σ, the single edge incident to the root must be paired with
another such edge. This extends to an automorphism of the entire subtree. In conclusion,
E
[
Zq

σ,i

]
converges to |Aut(σ)|q/2 times the number of perfect matchings on q objects, and

we conclude by Lemma 2.4 and Lemma 2.3. The proof for the scalar case is analogous.

Lemma B.15. If τ ∈ T consists of dσ copies of the subtrees σ ∈ S, then

Zτ
∞
=
∏
σ∈S

hdσ(Zσ; |Aut(σ)|) .

For ρ ∈ Fscalar with c components and consisting of dτ copies of each tree τ ∈ Tscalar,

n− c
2Zρ

∞
=

∏
τ∈Tscalar

hdτ

(
n− 1

2Zτ ; |Aut(τ)|
)
.

Proof. We first expand hd(Zσ; |Aut(σ)|) in the diagram basis using Lemma A.7 and iden-
tify the dominant terms, i.e. those which are combinatorially order 1. As in the proof of
Lemma B.14, the combinatorially order 1 terms in each monomial Zk

σ,i consist of pairing up
copies of the tree σ:

Zk
σ

∞
=

∑
M∈M(k)

|Aut(σ)||M |Zk−2|M | copies of σ ,

where M(k) is the set of partial matchings on k objects. Now we use the combinatorial
interpretation of Hermite polynomials (Lemma 2.5),

hd(Zσ; |Aut(σ)|) =
∑

N∈M(d)

(−1)|N ||Aut(σ)||N |Zd−2|N |
σ

∞
=

∑
N∈M(d)

(−1)|N ||Aut(σ)||N |
∑

M∈M(d−2|N |)

|Aut(σ)||M |Zd−2|N |−2|M | copies of σ

=
∑

M ′∈M(d)

|Aut(σ)||M
′|Zd−2|M ′| copies of σ

∑
N⊆M ′

(−1)|N |

= Zd copies of σ .

This completes the argument when τ consists of several copies of a single σ ∈ S. If σ, σ′ ∈ S
are distinct, using again Lemma A.7 and Lemma 4.10, we can check that

Zd copies of σ ⊙ Zd′ copies of σ′
∞
= Zd copies of σ and d′ copies of σ′ .
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The proof then follows by applying these arguments inductively, and extends analogously to
scalar diagrams.

Lemma B.16. Let α ∈ F have c floating components. Let α be the component of the root

and αfloat be the floating components. Then n− c
2Zα

∞
= n− c

2Zαfloat
Zα .

Proof. The product n− c
2Zαfloat

Zα can be expanded in the diagram basis using Lemma B.7.

We claim that the only non combinatorially negligible diagram is the one without intersec-
tions, which equals n− c

2Zα. When an intersection occurs, it can only be between the root
component and a floating component. The new component of the root is at most combi-
natorially order 1 (this is a property of all connected vector diagrams, Lemma 4.10), so
there is an “extra” factor of 1√

n
from the lost component which makes the intersection term

negligible.

Lemma B.17. {Zσ,i : σ ∈ S, i ∈ [n]}∪
{
n− 1

2Zτ : τ ∈ Tscalar

}
are asymptotically independent.

Proof. Fix constants q, r ∈ N. We proceed by computing the moment of a set of diagrams
σ1, . . . , σq ∈ S rooted at i1, . . . , iq ∈ [n] and τ1, . . . , τr ∈ Tscalar:

E

[
q∏

p=1

Zσp,ip

r∏
p=1

n− 1
2Zτp

]
. (23)

Let |V | =
∑q

p=1 |V (σp)|+
∑r

p=1 |V (τp)| and |E| =
∑q

p=1 |E(σp)|+
∑r

p=1 |E(τp)|. Let qdistinct
be the number of distinct roots, i.e. the number of distinct elements in {i1, . . . , iq}.

Expanding Eq. (23) gives a sum over embeddings of the diagrams. We will prove that
the dominant terms factor across the distinct (σp, ip) and τp; they correspond to pairing up
isomorphic σp at each distinct root and isomorphic τp.

Each nonzero term in the expansion of Eq. (23) equals n−(|E|+r)/2 (when every edge
appears exactly twice) or O(n−(|E|+r)/2) (in general) by Assumption 2.1. We partition the
summation based on the intersection pattern as in Definition A.5. For a given intersection
pattern, letting I be the union of the images of the embeddings, the number of terms with this
pattern is (1− o(1)) ·n|I|−qdistinct because the qdistinct root vertices are fixed. In an embedding
with nonzero expectation, every edge appears at least twice, so every non-root vertex is in
at least two embeddings. Applying this bound to all of the non-root vertices in I,

|I| ≤ qdistinct +
|V | − q

2
.

Multiplying the value of each term times the number of terms, the total contribution of this
intersection pattern is

n|I|−qdistinct− |E|+r
2 ≤ n

1
2
(|V |−q−|E|−r) .

Since the individual diagrams are connected, the exponent is nonpositive. The dominant
terms occur exactly when |I| = qdistinct+(|V |− q)/2, equivalently all of the non-root vertices
intersect exactly one other non-root vertex. Each edge must occur at least twice, and this
condition implies that each edge occurs exactly twice in the dominant terms.
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We claim that the only way that each edge and vertex can be in exactly two embeddings
is if isomorphic σp and τp are paired. Indeed, by connectivity of σp and τp, sharing one edge
extends to an isomorphism. Furthermore, because non-root vertices must intersect other
non-root vertices in the dominant terms, we have that no pairs can be made between σp and
τp′ , or between σp and σp′ which have distinct roots.

Theorem 4.11 follows from Lemma B.14, Lemma B.15, Lemma B.16, and Lemma B.17.
The constant-order joint moments of all the diagrams are summarized into the next theorem
which generalizes Theorem 1.1.

Theorem B.18. Suppose that A = A(n) is a sequence of random matrices satisfying As-
sumption 2.1. For all α1, . . . , αk ∈ A, i1, . . . , ik ∈ [n] and β1, . . . , βℓ ∈ Ascalar (allowing
repetitions anywhere),

E

[
k∏

j=1

n−C(αj)/2Zαj ,ij

ℓ∏
j=1

n−C(βj)/2Zβj

]
= E

[
k∏

j=1

Z∞
αj ,ij

ℓ∏
j=1

Z∞
βj

]
+O(n− 1

2 ) ,

where C(α) is the number of floating components of α, and where the asymptotic random
variables (Z∞

α,i)α∈A,i∈[n] and (Z∞
β )β∈Ascalar

are defined as:

Z∞
σ,i ∼ N (0, |Aut(σ)|) independently if σ ∈ S

Z∞
τ ∼ N (0, |Aut(τ)|) independently if τ ∈ Tscalar

Z∞
ρ,i =

∏
σ∈S

hdσ(Z
∞
σ,i; |Aut(σ)|)

∏
τ∈Tscalar

hdτ (Z
∞
τ ; |Aut(τ)|) if ρ ∈ F

Z∞
ρ =

∏
τ∈Tscalar

hdτ (Z
∞
τ ; |Aut(τ)|) if ρ ∈ Fscalar

Z∞
α,i = Z∞

α0,i
and Z∞

β = Z∞
β0

if removing hanging double edges

creates α0 ∈ F or β0 ∈ Fscalar

Z∞
α,i = Z∞

β = 0 if removing hanging double edges

is not in F or Fscalar

B.5 Handling empirical expectations

Empirical expectations are highly concentrated and the following lemma confirms this. Note
that the empirical expectations in the Onsager correction for AMP (Section 5.4) will create
floating components in the diagrams of the algorithmic state, but all such diagrams will be
negligible.

Lemma 4.19. Let x be a vector diagram expression with asymptotic state X ∈ Ω. Then as
scalar diagrams, 1

n

∑n
i=1 xi

∞
= E [X] .

Proof. The effect of summing a vector diagram Zα = (Zα,i)i∈[n] over i is to unroot α, con-
verting it to a scalar diagram. We prove this operation makes every diagram combinatorially
negligible, except for the constant term. For k ≥ 0 and a vector diagram α ∈ A:
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(i) If anZα is combinatorially negligible, then an
n

∑n
i=1 Zα,i is a combinatorially negligible

scalar term.

(ii) If anZα has combinatorial order 1, and the root of α is incident to at least one edge of
multiplicity 1, then an

n

∑n
i=1 Zα,i is a combinatorially negligible scalar term.

Unrooting a vector diagram does not change the number of vertices nor the number of edges.
During this operation, the number of vertices in I(α) stays the same if the root is adjacent
to an edge of multiplicity 1; otherwise it increases by at most 1. We readily check from the
definition that the extra 1

n
makes the resulting scalar terms combinatorially negligible.

Now let x̂
∞
= x be the tree approximation. The difference x−x̂ consists of combinatorially

negligible terms which stay negligible by part (i) above. The trees in T become negligible
by part (ii) above with the exception of the singleton tree which becomes 1. The singleton
has coefficient E[x̂1] = E[X] since the other trees are mean-zero (Corollary A.3).

C High-degree tree diagrams are not Gaussian

We compute that the star-shaped diagram with log n leaves and the root at a leaf is not
Gaussian (its fourth moment is significantly larger than the square of its second moment),
demonstrating that care must be taken when studying diagrams of superconstant size.13

This diagram appears after only T = O(log log n) iterations in the recursion

x1 = A1⃗ xt+1 = (xt)
2 xT+1 = AxT .

However, we expect that this diagram does not contribute significantly to nicer GFOMs that
strictly alternate between multiplication by A and constant-degree componentwise opera-
tions.

Fixing d, let γ denote (d-star graph)+. We compute that E
[
Z4

γ,1

]
≫ E

[
Z2

γ,1

]2
when

d ≈ log n. By Lemma A.2, the variance is

E
[
Z2

γ,1

]
= (1 + o(1))|Aut(γ)| = (1 + o(1))d! .

When computing the fourth moment E
[
Z4

γ,1

]
for constant d, the terms that are dominant

consist of (1) a perfect matching between the four edges incident to the root, (2) perfect
matchings between their d children. There are 3(d!)2 such terms, recovering the fourth
moment of a Gaussian with variance d!.

For d = log n, another type of term becomes dominant. These are the terms where all
four edges incident to the root are equal, then we have a perfect matching on 4d objects
divided into four groups of size d such that no two objects from the same group are matched.
Denote the latter set of matchings by M(d, d, d, d).

Lemma C.1. Up to a multiplicative poly(d) factor, |M(d, d, d, d)| ≳ 3d(d!)2.

13Similarly, adding an edge between two of the leaves creates a cyclic diagram with negligible variance but
non-negligible fourth moment.
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These terms come with a 1
n
factor due to the multiplicity 4 edge. When d = Ω(log n),

the extra factor of 3d overpowers the 1
n
and makes the fourth moment much larger than the

the squared variance (d!)2.

Proof of Lemma C.1. We establish a recursion. There are (3d)(3d − 1) · · · (2d + 1) ways to
match up the objects in the first group, which can be partitioned in O(d2) ways depending
on how many objects in each other group are matched. We will recurse on the “maximum-
entropy” case in which the first group matches d/3 elements from each other group, using
the following claim.

Claim C.2. Let d, k ∈ N such that d
k−1

is an integer. Counting the matchings between d
objects and a subset of (k−1)d objects in k−1 groups, as a function of the number of objects
matched in each group, the number of matchings is maximized when there are d

k−1
matched

elements per group.

Proof of Claim C.2. Letting n1, . . . , nk−1 be the number of matched elements per group, we
may directly compute this number as

∏k−1
i=1 (d)ni

where (d)k = d(d− 1) · · · (d− k + 1) is the
falling factorial. When ni and nj are replaced by ni − 1 and nj + 1, the ratio of new to old
values is

d− nj

d− ni + 1

which is at least 1 if ni ≥ nj + 1. Hence the ni are equal at the maximum.

Using Claim C.2, up to a factor of O(d2),

|M(d, d, d, d)| ≳ (3d)(3d− 1) · · · (2d+ 1)|M(2d/3, 2d/3, 2d/3)|

≍
(
3d

e

)3d ( e

2d

)2d
|M(2d/3, 2d/3, 2d/3)|

where the second equality holds up to a poly(d) factor by Stirling’s approximation:

Fact C.3 (Stirling’s approximation). Up to a multiplicative poly(d) factor, d! ≍
(
d
e

)d
.

Recursing via the same principle,

|M(2d/3, 2d/3, 2d/3)| ≳ (4d/3)(4d/3− 1) · · · (2d/3 + 1)|M(d/3, d/3)|
= (4d/3)(4d/3− 1) · · · (2d/3 + 1)(d/3)!

≍
(
4d

3e

)4d/3(
3e

2d

)2d/3(
d

3e

)d/3

(Fact C.3)

In total,

|M(d, d, d, d)| ≳ 3d
(
d

e

)2d

.
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