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Abstract. The planted random subgraph detection conjecture of Abram
et al. (TCC 2023) asserts the pseudorandomness of a pair of graphs
(H,G), where G is an Erdős-Rényi random graph on n vertices, and H
is a random induced subgraph of G on k vertices. Assuming the hard-
ness of distinguishing these two distributions (with two leaked vertices),
Abram et al. construct communication-efficient, computationally secure
(1) 2-party private simultaneous messages (PSM) and (2) secret sharing
for forbidden graph structures.
We prove the low-degree hardness of detecting planted random subgraphs
all the way up to k ≤ n1−Ω(1). This improves over Abram et al.’s analysis
for k ≤ n1/2−Ω(1). The hardness extends to r-uniform hypergraphs for
constant r.
Our analysis is tight in the distinguisher’s degree, its advantage, and in
the number of leaked vertices. Extending the constructions of Abram
et al, we apply the conjecture towards (1) communication-optimal mul-
tiparty PSM protocols for random functions and (2) bit secret sharing
with share size (1 + ϵ) logn for any ϵ > 0 in which arbitrary minimal
coalitions of up to r parties can reconstruct and secrecy holds against all
unqualified subsets of up to ℓ = o(ϵ logn)1/(r−1) parties.

1 Introduction

In the planted clique model [Jer92,Kuc95] one observes the union of an Erdős-
Rényi random graph G0 ∼ G(n, 1/2) and a randomly placed k = kn-clique
H, i.e., the graph G = G0 ∪ H. The goal of the planted clique detection task
is to distinguish between observing G from the planted clique model and G
which is simply an instance of G(n, 1/2). The planted clique conjecture states
that the planted clique instance remains pseudorandom whenever k ≤ n1/2−Ω(1)

up to n−Ω(1) distinguishing advantage. Conversely, multiple polynomial-time
algorithms can distinguish with high probability whenever k = Ω(

√
n). Re-

search on the planted clique conjecture has gone hand-in-hand with key de-
velopments in average-case complexity theory over the last decades, including
spectral and tensor algorithms [AKS98, FK08], lower bound techniques for re-
stricted classes including the sum-of-squares hierarchy [BHK+19], low-degree
⋆ University of Ottawa. Email: abogdano@uottawa.ca

⋆⋆ Bocconi University. Email: chris.jones@unibocconi.it
⋆ ⋆ ⋆ Bocconi University. Email: alon.rosen@unibocconi.it

† Yale University. Email: ilias.zadik@yale.edu



2 Andrej Bogdanov, Chris Jones, Alon Rosen, and Ilias Zadik

polynomial methods [Hop18], statistical query methods [FGR+17] and MCMC
methods [Jer92,GZ19,CMZ23], and the development of new average-case reduc-
tions [BB20,HS24].

At this point, the conjectured hardness of the planted clique problem around
k ≈

√
n stands as a central conjecture in average-case complexity. But despite

its popularity, the cryptographic applications have been quite limited, with one
exception in the symmetric-key setting proposed by Juels and Peinado [JP97].
Recently Abram et al. [ABI+23] revisited the planted clique problem and showed
how it can be useful in the context of secret sharing and secure computation. The
authors specifically show that (slight variants of) the planted clique conjecture
can be used to construct a computationally secure scheme whose share size is
much smaller than the best existing information-theoretically secure scheme.

In order to obtain further improvements to the share size, Abram et al.
proposed a new intriguing conjecture similar to planted clique. They start by
defining the following general model (also introduced in [Hul22]).

Definition 1. (Planted (induced) subgraph model1) Fix H to be an arbitrary
unlabeled subgraph on k vertices. Then G is chosen to be a random n-vertex
graph where a copy of H is placed on k vertices chosen uniformly at random (as
an induced subgraph on the k vertices), and all edges without both endpoints on
the k vertices appear with probability 1/2.

When H is the k-clique, the planted subgraph model becomes exactly the
planted clique model. The clique is the most structured graph possible and it is
natural to wonder:

could the problem be significantly harder if a different graph H is planted?

Abram et al. suggest studying the planted random subgraph model in which H
is an instance of G(k, 1/2). An equivalent definition is the following.

Definition 2. (Planted random subgraph model) One observes a pair (H,G),
where G is a random n-vertex graph and H is a random k-subgraph of G with
the vertex labels removed.

Abram et al. make the following interesting conjecture.

Conjecture 1. (Planted Random Subgraph conjecture [ABI+23]) The planted
random subgraph problem is hard up to advantage n−Ω(1) provided k ≤ n1−Ω(1),
with high probability over H ∼ G(k, 1/2) as n grows to infinity.

This stands in contrast to the case thatH is a k-clique where a computational
phase transition is expected to take place at the smaller value k ≈ n1/2.

Abram et al. confirm the planted random subgraph conjecture in the low-
degree analysis framework (to be described below) but only up to the “planted
1 A similar yet different model where one observes the union of a copy of H with

an instance of G(n, 1/2) has also been recently analyzed in the statistical inference
literature [Hul22,MNWS+23,YZZ24]. For this work, we solely focus on the “induced”
variant, where H appears as an induced subgraph of G.
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clique threshold” k ≤ n1/2−Ω(1) (a result also independently proven by Huleihel
[Hul22]). Their work leaves open the regime n1/2−Ω(1) ≤ k ≤ n1−Ω(1), and
in particular the question of whether there is a larger window of hardness for
planted random subgraph than for planted clique.

Our main contribution is the confirmation of Conjecture 1 in the low-degree
framework. We prove that the planted random subgraph problem remains hard
for low-degree distinguishers of degree at most o((log n/ log log n)2) in the full
range k ≤ n1−Ω(1). The degree is best possible up to log log n factors, and the
analysis extends also to the case of hypergraphs. See Section 2 for the precise
theorem statement.

1.1 Secret sharing and leakage

For their intended cryptographic applications Abram et al. rely on a strength-
ening of the planted random subgraph conjecture which also allows for leaked
additional information about the embedding of H in G. It is easiest to motivate
these stronger conjectures through their intended application.

A (partial) access structure for k parties is a pair of set systems R,S over
{1, . . . , k}, where R is upward-closed, S is downward-closed, and R,S are dis-
joint. A bit secret sharing scheme consists of a randomized sharing algorithm
that maps the secret bit s ∈ {0, 1} into k shares so that sets in R can reconstruct
s from their shares with probability one, while sets in S cannot distinguish s = 0
or s = 1.

In a forbidden graph access structure, R is the edge-set of a graph and S is
the union of its complement {{u, v} ̸∈ R : u ̸= v ∈ [k]} and the set [k] of vertices.
Abram et al. propose the following secret sharing scheme for any such structure:

Construction 1. Forbidden graph secret sharing:

1. The dealer samples a random n-vertex graph G and remembers a secret
k-vertex subgraph H of it randomly embedded via ϕ : V (H) → V (G).

2. The dealer publishes the pair (Hs, G), where Hs is a k-vertex graph with
adjacency matrix

Hs(u, v) =

{
H(u, v)⊕ s, if {u, v} ∈ R

a random bit, otherwise.
(1)

3. The share of party v is the value ϕ(v) ∈ [n].

If {u, v} ∈ R, the parties reconstruct by calculating

Hs(u, v)⊕G(ϕ(u), ϕ(v)) = H(u, v)⊕G(ϕ(u), ϕ(v))⊕ s = s. (2)

Secrecy requires that the joint distribution (Hs, G, ϕ(u), ϕ(v)) of the public
information and the shares is indistinguishable between s = 0 and s = 1 provided
{u, v} ∈ S. In the absence of the “leakage” (ϕ(u), ϕ(v)) this is a consequence of
the planted random subgraph conjecture (Conjecture 1).
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To handle the leakage, we consider the following generalization. Two parties
{u, v} ∈ S know the location of their edge H(u, v) = G(ϕ(u), ϕ(v)) in G, which
could potentially be useful to search for the “local structure of H” around their
edge. The new conjecture posits that if u and v have this additional information,
they still cannot distinguish whether H is planted. With an eye towards stronger
security we state it below for a general ℓ.

Conjecture 2. (Planted random subgraph conjecture with ℓ-vertex leakage)
With high probability over H ∼ G(k, 1/2), the following two distributions are
n−Ω(1)-indistinguishable in polynomial time for all subsets L = {u1, . . . , uℓ} ⊆
V (H) of size ℓ:

1. (planted) (H,G, ϕ(u1), . . . , ϕ(uℓ)) where we choose uniformly at random an
injective function ϕ : [k] → [n] and embed H into G on the image of ϕ. The
remaining edges of G are sampled randomly.

2. (model) (H,G, ϕ(u1), . . . , ϕ(uℓ)) where we choose uniformly at random an
injective function ϕ : L→ [n] and embed the subgraph of H on L into G on
the image of ϕ. The remaining edges of G are sampled randomly.

Assuming this conjecture with ℓ = 2, given (ϕ(u), ϕ(v)) for {u, v} ∈ S, we
claim that both (H0, G) and (H1, G) are pseudorandom and hence indistinguish-
able: As {u, v} ∈ S, the (u, v)-th bits of H0 and H1 in (Hs, G) are independent
of all the others and cannot be used to distinguish. Once the (u, v)-th bits of H0

and H1 are removed, both (H0, G) and (H1, G) become identically distributed to
the planted (H,G) with its (u, v)-th bit removed. By the conjecture, this model
is indistinguishable from a uniformly random string.

The share size in this scheme is (1 + o(1)) log k. In contrast, the most com-
pact known forbidden graph scheme with perfect security has shares of size
exp Θ̃(

√
log k) [LVW17,ABF+19]. Statistical security requires shares of size log k−

O(1) when R is the complete graph [ABI+23]. It is not known if computational
security is subject to the same limitation.

Under the ℓ-vertex leakage assumption the secrecy holds not only against
pairs of parties that are not an edge in R, but also against all independent sets
up to size ℓ, i.e.,

S = {I : I is an independent set of R and |I| ≤ ℓ}.

By passing to r-hypergraphs instead of graphs, we naturally extend the con-
struction to R which is an arbitrary subset of at most r parties, with security
against all size-ℓ independent sets of R (see Construction 3 below). The most
compact known perfectly secure forbidden r-hypergraph scheme has share size
exp Θ̃(

√
r log k) [LVW17] whereas our share size is still (1 + o(1)) log k.

It would be interesting to obtain a provable separation in share size between
the computationally secure Construction 3 and the best possible perfectly secure
construction for some access structure. In Section 4.1 we explain why this is
challenging using available methods.
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1.2 Private simultaneous messages (PSM)

In a PSM, Alice and Bob are given inputs x, y to a public function F : [k]2 →
{0, 1}. They calculate messages ϕ(x), ϕ(y) which are securely forwarded to Carol.
Carol needs to output the value F (x, y) without learning any information about
x and y beyond this value.

Abram et al. propose the following PSM protocol. In a setup phase, F viewed
as a bipartite graph is randomly embedded into an otherwise random host graph
G via ϕ. The graph G is given to Carol and the embedding ϕ is given to Alice
and Bob. Carol outputs G(ϕ(x), ϕ(y)) which must equal F (x, y).

Abram et al. argue that this protocol is “secure” for a (1 − o(1))-fraction of
functions F under Conjecture 2 with leakage ℓ = 2. Their security definition
appears to additionally assume that the choice of inputs (x, y) is independent of
the function F . In contrast, our security definition in Section 4.2 allows for Alice
and Bob to choose their inputs jointly from some distribution that depends on the
description of F . This is more natural for potential cryptographic applications;
Alice and Bob should not be expected to commit to their input before they
know which function they are computing. We extend our low-degree analysis to
support this stronger notion of security.

Messages in this protocol are of length log n = (1 + ϵ) log k. In contrast,
perfect security is known to require combined message length |ϕ(x)| + |ϕ(y)| ≥
(3 − o(1)) log k [FKN94,AHMS18] (but it is not known if statistical security is
subject to the same bound).

The r-hypergraph variant of the conjecture with leakage ℓ = r gives PSM
security for r-party protocols also with message size log n = (1 + ϵ) log k (Sec-
tion 4.2). Even without a security requirement the message size must be at least
(1− o(1)) log k for the protocol to be correct on most inputs.

1.3 Low-degree lower bounds

We provide evidence for these conjectures in the form of lower bounds against
the low-degree polynomial computational model (see e.g., [KWB19] and refer-
ences therein). In this model, fixing a parameter D = Dn, the distinguishing
algorithm is allowed to compute an arbitrary degree-D polynomial function of
the bits of the input over the field R. The algorithm succeeds if the value of
the polynomial is noticeably different between the random and planted mod-
els. Degree-D polynomials serve as a proxy for nO(D) time computation since a
degree-D polynomial in poly(n) input bits can be evaluated by brute force in
time nO(D) (ignoring numerical issues).

Surprisingly, for noise-robust2 hypothesis testing problems it has been conjec-
tured that whenever all degree-D polynomials with D = O(log n) fail (formally,
no polynomial strongly separates the two distributions [COGHK+22, Section
7]), then no polynomial-time distinguisher succeeds. This is now known as the
2 Noise-robustness means that the planted structure is resilient to small random per-

turbations [Hop18,HW21].
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“low-degree conjecture” of Hopkins [Hop18]. Based on this heuristic, a provable
failure of O(log n)-degree polynomials to strongly separate the two distributions
provides a state-of-the-art prediction of the hard and easy regimes for the prob-
lem of interest.

It should be noted that there exists a certain weakness in existing low-degree
hardness evidence for the planted clique problem, which also applies to our lower
bound for the planted random subgraph problem (and that of [ABI+23]). Both
planted clique and planted random subgraph technically do not satisfy the noise-
robust assumption of the low-degree conjecture because the planted isomorphic
copy ofH in the graphG is not robust to small perturbations ofG (if 0.01 fraction
of the edges of G are randomly flipped then the copy of H will be destroyed).
Noise-robustness is an important assumption; in fact, in a handful of carefully
chosen noise-free problems, low-degree methods are provably weaker than other
brittle polynomial-time methods such as Gaussian elimination or lattice-basis
reduction techniques [ZSWB22]. That being said, the existing techniques do not
appear applicable to graph settings such as planted clique or the planted random
subgraph model.

2 Our result

LetH be an r-uniform hypergraph over vertex set [k] chosen uniformly at random
(i.e., each r-hyperedge between the vertices of [k] is included independently with
probability half). Let L ⊆ V (H) of size ℓ. Let PH,L and QH,L be the following
distributions over r-uniform hypergraphs G with vertex set [n], where n ≥ k ≥ ℓ:

1. In the planted distribution PH,L, an injective map ϕ : [k] → [n] is chosen
uniformly at random among all injective maps conditioned on ϕ(u) = u for
u ∈ L. The hyperedges of G are

G(u1, . . . , ur) =

{
H(ϕ−1(u1), . . . , ϕ

−1(ur)), if ϕ−1(u1), . . . , ϕ
−1(ur) exist

a random bit, otherwise.

2. In the null distribution QH,L, the hyperedges of G are

G(u1, . . . , ur) =

{
H(u1, . . . , ur), if u1, . . . , ur ∈ L

a random bit, otherwise.

Uniform r-hypergraphs on n vertices are represented by their adjacency maps(
[n]
r

)
→ {±1}, with −1 and 1 representing the presence and absence of a hyper-

edge, respectively.
In words, the hypergraph G ∼ PH,L drawn from the planted model has

the public hypergraph H embedded into a uniform choice of k vertices, and is
otherwise purely random. However, the location of L ⊆ V (H) is fixed and public
information. The hypergraph G ∼ QH,L drawn from the random model copies
the subgraph of H on L, but it does not use the part of H outside of L; all
remaining edges of the graph are chosen purely at random. Note that in both
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models, the marginal distribution of G is a uniformly random hypergraph, but
distinguishers know H and L.

In the case r = 2 of graphs, there is a slight difference between the distribu-
tions PH,L,QH,L and those described in the Introduction, namely that we have
imposed the condition ϕ(u) = u on the leaked vertices in L. This condition is
without loss of generality, and in particular, it does not affect the complexity of
distinguishing PH,L from QH,L.

Following the low-degree framework [KWB19], we consider the degree-D-
likelihood ratio LRD(H,L),

LRD(H,L) = sup
p∈R[G(u):u∈([n]

r )]
deg p≤D

Advp(H,L)

where

Advp(H,L) =
EPH,L

[p(G)]−EQH,L
[p(G)]√

VarQH,L
[p(G)]

.

Here p ∈ R[G(u) : u ∈
(
[n]
r

)
] denotes a multivariate polynomial in the quan-

tities G(u1, . . . , ur) for (u1, . . . , ur) ∈
(
[n]
r

)
with degree at most D. LRD(H,L)

measures the best advantage of a degree-D polynomial distinguisher that can
arbitrarily preprocess H and knows L. Whenever LRD(H,L) = o(1) then no
D-degree polynomial can achieve strong separation between PH,L and QH,L

[COGHK+22, Section 7].
To gain intuition on the performance of low-degree polynomials, let us start

with the simplest one, which is the bias of the edges of the hypergraph G:

p(G) =
∑

1≤u1<···<ur≤n

G(u1, . . . , ur).

Assume for simplicity that L = ∅. It holds by direct expansion,

EPH
[p(G)] =

∑
1≤u1<···<ur≤k

H(u1, . . . , ur)

EQH
[p(G)] = 0

VarQH
[p(G)] =

(
n
r

)
.

The likelihood ratio is

Advp(H) = Θ

(
EPH

[p(G)]

nr/2

)
.

As EPH
[p(G)] is a sum of the

(
k
r

)
hyperedge indicators for H, EPH

[p(G)] would
have value ±Θ(kr/2) for a typical choice of H, resulting in an advantage of
Θ((k/n)r/2) (after optimizing between p(G) or −p(G)). The advantage is o(1)
when k ≤ n1−Ω(1) and therefore the distinguisher fails in this regime. Yet, when
k = Θ(n) the calculation suggests the count distinguisher succeeds with Ωr(1)
probability which indeed can be confirmed by being a bit more careful in the
above analysis. Our main theorem shows that other low-degree polynomials can-
not substantially improve upon the edge-counting distinguisher.
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Theorem 1. Assume for some p ∈ N and constant ϵ > 0, the following bounds
hold on the size of H, k, the leakage number ℓ and the degree D:

1. k ≤ (n− ℓ)n−ϵ/24p2D2 + ℓ
2. ℓ ≤ min{k, ϵ1/(r−1)r(log n)1/(r−1)/40} and,
3. D ≤ ϵ3 (log n)

r/(r−1)
/
(

r
r−1 log log n

)
.

Then for any L ⊆ [k] with |L| = ℓ,

(
EHLRD(H,L)2p

)1/p ≤ 2(
ℓ

r−1)n−ϵ

1− n−ϵ/2
+ exp

(
−Ω

(
r(ϵ log n)1+1/(r−1)

))
.

In particular, for p = 1, ℓ = o((log n)1/(r−1)), and ϵ = Ω(1)

EHLRD(H,L)2 = n−ϵ+o(1).

The bound is tight in the following ways:

1. Degree: The bound on D is optimal (for constant ϵ) up to a factor of
O(log log n). A degree-O((r log n)r/(r−1)) distinguisher with high advantage
and time complexity 2O((r logn)1/(r−1)) exists. This is the algorithm that looks
for the presence of a subgraph in G that is identical to the one induced by
the first O(rr/(r−1)(log n)1/(r−1)) vertices in H.

2. Leakage: When
(

ℓ
r−1

)
≥ log(2n) the distinguishing advantage is constant

(for any k > ℓ). The distinguisher that looks for the existence of a vertex in
G whose adjacencies in L match those of an arbitrary vertex in H outside L
has constant advantage, degree

(
ℓ

r−1

)
, and time complexity O(n

(
ℓ

r−1

)
).

3. Advantage: The edge-counting distinguisher described above has advantage
(k/n)r/2 = n−ϵr/2. Our proof can show a matching lower bound in the
absence of leakage. When leakage is present, assuming ℓ > r − 1, the linear
distinguisher

sign
∑
v ̸∈L

G(1, . . . , r − 1, v) = sign
∑
v ̸∈L

H(1, . . . , r − 1, v)

has squared advantage Ω((k − ℓ)/(n − ℓ)) = Ω(n−ϵ) which matches the
theorem statement.

2.1 Our proof

Abram et al. obtain their result as a consequence of a worst-case bound for
arbitrary planted H: They prove that for all graphs H with k ≤ n1/2−ϵ vertices,

LRD(H,L) ≤ o(1) .

As k = n1/2 is tight for clique their method cannot prove a better bound. In
contrast, we average the likelihood ratio over the choice of H, showing that
EH [LRD(H,L)2] is small all the way up to k ≤ n1−ϵ. By taking the expectation
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overH, we introduce extra cancellations that are necessary to obtain the stronger
bound.

By Markov’s inequality

PH [LRD(H,L)2 ≥ η] ≤ EH [LRD(H,L)2]

η
.

A vanishing expectation implies concentration, namely LRD(H,L) = o(1) for a
1− o(1) fraction of H.

The above calculation bounds the advantage for a fixed leakage set L. In order
to bound the advantage of an arbitrary set L for the cryptographic applications,
we also bound the higher moments of LRD(H,L). Using p = ℓ log n and applying
Markov’s inequality with η = 4n−ϵ+o(1)

PH [LRD(H,L)2 ≥ η] ≤ EH [LRD(H,L)2p]

ηp

≤
(
n−ϵ+o(1)

η

)p

= 4−ℓ logn ≤ 1

n
(
n
ℓ

) .
Taking a union bound over the

(
k
ℓ

)
choices for L, we can deduce the stronger

result that no leakage set L can attain advantage η:

PH

[
maxL⊆V (H)

|L|=ℓ

LRD(H,L)2 ≥ 4n−ϵ+o(1)

]
≤ o(1) .

We summarize the final bound on the low-degree advantage for Conjecture 2 as
the following corollary, which includes the parameters.

Corollary 1. For all p ∈ N and η > 0,

PH

[
maxL⊆V (H)

|L|=ℓ

LRD(H,L)2 ≥ η

]

≤
(
n

ℓ

)
η−p

(
2(

ℓ
r−1)n−ϵ

1− n−ϵ/2
+ exp

(
−Ω

(
r(ϵ log n)1+1/(r−1)

)))p

.

3 Proof of Theorem 1

Viewed as an
(
n
r

)
-dimensional vector, every G in the support of QH,L decomposes

as (G′, GL), where GL is the subgraph of G on L and G′ is the remaining part
(indexed by r-subsets that have at least one vertex in [n] \ L).

We start by claiming that without loss of generality, all polynomial distin-
guishers of interest are constant in the coordinates of GL. Indeed, in both the
planted PH,L and null distributions QH,L, the status of the hyperedges in L is
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always fixed. As fixing the L-indexed inputs can only lower the degree of the
distinguishing polynomial p, this assumption holds without loss of generality.

In the nullG′ is simply uniformly random in {±1}(
[n]
r )\(

L
r), i.e., QH,L(G

′, GL) =
Q(G′), where Q is the uniform distribution. Now, let us focus on G′ for the
planted PH,L. We can describe the distribution P ′

H,L of G′ as follows:

1. Choose a random subset S′ of k − ℓ vertices in [n] \ L.
2. Choose a random permutation π′ : S′ → [k] \L. Extend π′ to a permutation

from S′ ∪ L to [k] by setting π′(u) = u for all u ∈ L.
3. Set

G′(u1, . . . , ur) =

{
H(π′(u1), . . . , π

′(ur)), if u1, . . . , ur ∈ S′ ∪ L
a random bit, otherwise.

Using the above observations we have,

LRD(H,L) = sup
p∈R[G(u):u∈([n]

r )]
deg p≤D

EPH,L
[p(G)]−EQH,L

[p(G)]√
VarQH,L

[p(G)]

= sup
p∈R[G′(u):u∈([n]

r )\(
[ℓ]
r )]

deg p≤D

EP′
H,L

[p(G′)]−EQ[p(G
′)]√

VarQ[p(G′)]

Since the null distribution Q is a product measure, by a standard linear
algebraic argument in the literature of the low-degree method (see [KWB19]
or [COGHK+22, Lemma 7.2]), the optimal degree-D polynomial takes an explicit
form. Using the expansion with respect to the Fourier-Walsh basis {χα(G

′) =∏
e∈αG

′
e, α ⊆

(
[n]
r

)
\
(
[ℓ]
r

)
}, the explicit formula for the squared advantage is

LRD(H,L)2 =
∑

α⊆([n]
r )\(

L
r)

1≤|α|≤D

L̂R(α|H,L)2 (3)

where

L̂R(α|H,L) = EQ
P ′
H,L(G

′)

Q(G′)
χα(G

′) = EP′
H,L

χα(G
′).

Now we expand the square on the right-hand side of (3) and take the expectation
over H.

EHLRD(H,L)2 =
∑

α⊆([n]
r )\(

L
r)

1≤|α|≤D

Eχα(G
′)χα(G

′′), (4)

where the right-hand expectation is now taken over both the choice of H and
the choice of two independent “replicas” G′, G′′ sampled from P ′

H . The joint
distribution of G′ and G′′ is determined by the independent choices of H, the
subsets S′, S′′, and the permutations π′, π′′. Equation (4) gives a formula for
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the second moment of the likelihood ratio with respect to the random variable
H, which we spend the rest of this section evaluating; higher moments will be
computed later.

We fix α ⊆
(
[n]
r

)
\
(
L
r

)
and upper bound the expectation. Since we are

considering the expectation of a Fourier character, it will often be zero. Let
V (α) be the set of vertices in [n] spanned by α. If S′ ∪ L or S′′ ∪ L does
not entirely contain V (α) then the expectation is zero: if, say, e ∈ α′ is not
contained in S′ ∪ L, then G′(e) is independent of all other bits appearing in
Eχα(G

′)χα(G
′′) =

∏
e∈αG

′(e)G′′(e) resulting in a value of zero. Therefore

E[χα(G
′)χα(G

′′)]

= E[χα(G
′)χα(G

′′) | S′ ∩ S′′ ⊇ V (α) \ L] ·P[S′ ∩ S′′ ⊇ V (α) \ L]
= E[χα(G

′)χα(G
′′) | S′ ∩ S′′ ⊇ V (α) \ L] ·P[S′ ⊇ V (α) \ L]2

(5)

by independence of S′ and S′′. As S′ is a random k-subset of [n] \ L,

P[S′ ⊇ V (α) \ L] = (k − ℓ)(k − ℓ− 1) · · · (k − ℓ− |V (α) \ L|+ 1)

(n− ℓ)(n− ℓ− 1) · · · (n− ℓ− |V (α) \ L|+ 1)

≤
(
k − ℓ

n− ℓ

)|V (α)\L|

. (6)

Conditioned on both S′ and S′′ containing V (α) \ L,

χα(G
′)χα(G

′′) =
∏

(u1,...,ur)∈α

G′(u1, . . . , ur)G
′′(u1, . . . , ur)

=
∏

(u1,...,ur)∈α

H(π′(u1), . . . , π
′(ur))H(π′′(u1), . . . , π

′′(ur)). (7)

As H consists of i.i.d. zero mean ±1 entries, this expression vanishes in expec-
tation unless every hyperedge in the collection

(ψ(u1), . . . , ψ(ur)) : (u1, . . . , ur) ∈ α,ψ ∈ {π′, π′′}

appears exactly twice, in which case the product equals to one. This is only
possible if π : S′ → S′′ given by π = (π′′)−1 ◦ π′ restricts to an automorphism of
α. In particular, π must fix the set V (α). As π outside L is a permutation which
is chosen uniformly at random, we conclude that (7) is upper bounded by,

P[π fixes V (α)] =
|V (α) \ L|!

(k − ℓ)(k − ℓ− 1) · · · (k − ℓ− |V (α) \ L|+ 1)

≤
(
|V (α) \ L|
k − ℓ

)|V (α)\L|

. (8)

Plugging (6) and (8) into (5) and then into (4) yields

ELRD(H,L)2 ≤
∑

α⊆([n]
r )\(

L
r)

1≤|α|≤D

(
|V (α) \ L| (k − ℓ)

(n− ℓ)2

)|V (α)\L|

. (9)
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This bound only depends on the hypergraph α through |V (α) \ L|. For v =
1, . . . , rD let

N(v,D) =
∣∣{α ⊆

(
[n]
r

)
\
(
L
r

)
: |V (α) \ L| = v, 1 ≤ |α| ≤ D

}∣∣ . (10)

Grouping the terms on the right-hand side by the value of v = |V (α) \ L| gives

ELRD(H)2 ≤
rD∑
v=1

N(v,D) ·
(
v(k − ℓ)

(n− ℓ)2

)v

. (11)

To finish the proof we will demonstrate that this sum is dominated by the leading
term v = 1. We split this proof using the following two propositions.

In the first proposition, we bound the “low” vertex size part.

Proposition 1. Assume that e(k − ℓ)/(n− ℓ) ≤ n−ϵ. Then for every 0 < δ < ϵ
it holds for sufficiently large n,

⌊t⌋∑
v=1

N(v,D)

(
v(k − ℓ)

(n− ℓ)2

)v

≤ 2(
ℓ

r−1) · n−ϵ

1− n−ϵ+δ
,

where

t := e−1(r − 1)(δ log n)1/(r−1) − ℓ (12)

In the second proposition, we bound the “high” vertex size part.

Proposition 2. Assume that e(k−ℓ)/(n−ℓ) ≤ n−ϵ. Assume also that for some
δ > 0 for which 0 < δ < ϵ, it holds

1. ℓ ≤ (r/9)(δ log n)1/(r−1)

and,
2. D ≤ ϵδ2(log n)r/(r−1)/

(
r

r−1 log log n
)
.

Then for t given in (12) if also δ < 1/4 it holds,

rD∑
v=⌊t⌋+1

N(v,D)

(
v(k − ℓ)

(n− ℓ)2

)v

≤ exp
(
−Ω(δ1/(r−1)ϵr(log n)r/(r−1))

)
.

Notice now that directly combining both the Propositions for δ = ϵ/4 directly
implies Theorem 1.

3.1 Proof of Proposition 1

Proof. For fixed v, the set V (α) \ L can be chosen in
(
n−ℓ
v

)
ways. The subset α

can then include any of the hyperedges in V (α) of which there are at most
(
v+ℓ
r

)
,
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except those that at completely contained in L of which there are
(
ℓ
r

)
, leading

to the bound:
N(v,D) ≤

(
n− ℓ

v

)
· 2(

v+ℓ
r )−(ℓr). (13)

Bounding N(v,D) by (13) and using the standard binomial coefficient bound(
a
b

)
≤ (ea/b)b, the left hand side is at most

t∑
v=1

(
e(k − ℓ)

n− ℓ

)v

2(
v+ℓ
r )−(ℓr)

As e(k − ℓ)/(n− ℓ) ≤ n−ϵ = n−ϵ+δ · nδ, this is bounded by

t∑
v=1

n−(ϵ−δ)v · 2−δv log2 n+(v+ℓ
r )−(ℓr). (14)

Let f(v) = −δv log2 n+
(
v+ℓ
r

)
−
(
ℓ
r

)
, v ≥ 1. For all integer v ≥ 1,

f(v + 1)− f(v) = −δ log2 n+

(
v + ℓ

r − 1

)
≤ −δ log n+

(
e(v + ℓ)

r − 1

)r−1

.

By the definition of t, this is negative when 1 ≤ v ≤ t, so f(v) is maximized at
v = 1. Therefore (14) is at most

⌊t⌋∑
v=1

n−(ϵ−δ)v · 2−δ logn+(ℓ+1
r )−(ℓr) ≤ 2(

ℓ
r−1) · n−ϵ

1− n−ϵ+δ

using the identity
(
ℓ+1
r

)
−
(
ℓ
r

)
=
(

ℓ
r−1

)
and the geometric sum formula. ⊓⊔

3.2 Proof of Proposition 2

Proof. When v is large, the bound (13) can be improved by taking into account
that at most D of the hyperedges can be chosen:

N(v,D) ≤
(
n− ℓ

v

)
·D
((v+ℓ

r

)
−
(
ℓ
r

)
D

)
≤ D

(
e(n− ℓ)

v

)v

·
(
e
(
v+ℓ
r

)
D

)D

≤
(
e(n− ℓ)

v

)v

·
(
e(v + ℓ)

r

)rD

·D
(
e

D

)D

.
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Under the assumption e(k − ℓ)/(n − ℓ) ≤ n−ϵ the summation of interest is at
most

rD∑
v=t+1

(
e(k − ℓ)

n− ℓ

)v

·
(
e(v + ℓ)

r

)rD

·D
(
e

D

)D

≤ rD2

(
e

D

)D

· n−ϵt

(
e(rD + ℓ)

r

)rD

≤ rD2

(
e

D

)D

· n−ϵt
(
e(D + ℓ)

)rD
.

As D ≤ ϵδ2(log n)r/(r−1)/( r
r−1 log log n) and ℓ ≤ (r/9)(δ log n)1/(r−1), for suffi-

ciently large n,

D log
(
(D + ℓ)/(ϵδ2)

)
≤ ϵδ2(log n)r/(r−1),

Hence, for sufficiently small constant 0 < δ < 1, for sufficiently large n it holds

D log (e(D + ℓ))) ≤ ϵδ2(log n)r/(r−1),

Using also the elementary inequality D2(e/D)D ≤ 8 we conclude that the sum-
mation of interest is at most

8rn−ϵt exp
(
ϵδ2(log n)r/(r−1)

)
.

Plugging in the direct bound from the definition of t and the upper bound on
the leaked vertices,

t ≥ r

7
(δ log n)1/(r−1)

we conclude that the summation of interest is at most

8r exp

(
−ϵr − 1

e
δ1/(r−1)(log n)r/(r−1) + ϵδ2(log n)r/(r−1)

)
.

Choosing now δ < 1/4 concludes the result. ⊓⊔

3.3 Extension to higher moments

Now we extend the calculation in Theorem 1 from p = 1 to higher p. The 2p-th
moment of LRD(H,L) is

EHLRD(H,L)2p = EH

( ∑
α⊆([n]

r )\(
L
r)

1≤|α|≤D

EG′∼P′
H

G′′∼P′
H

χα(G
′)χα(G

′′)

)p

=
∑

α1,...,αp⊆([n]
r )\(

L
r)

1≤|αi|≤D

E

p∏
i=1

χαi(G
′
i)χαi(G

′′
i )



Low-degree Security of the Planted Random Subgraph Problem 15

where the expectation is over H and also over the replicas G′
i, G

′′
i sampled inde-

pendently from P ′
H . Each G′

i is equivalently sampled as S′
i and π′

i (and likewise
G′′

i as S′′
i and π′′

i ).
Fix the Fourier characters α1, . . . , αp and let V (αi) be the set of vertices in

[n] spanned by αi. First, the expectation is only nonzero if all of the sets S′
i and

S′′
i contain V (αi) \ L. By (6) this occurs with probability at most

P [∀i ∈ [p]. S′
i ∩ S′′

i ⊇ V (αi) \ L] ≤
(
k − ℓ

n− ℓ

)2
∑p

i=1 |V (αi)\L|

. (15)

Conditioned on this event,
p∏

i=1

χαi
(G′

i)χαi
(G′′

i ) =

p∏
i=1

χπ′
i(αi)(H)χπ′′

i (αi)(H) .

When the expectation is taken over H, this is only nonzero if every hyperedge
appears an even number of times among the collection of edges

C := (ψi(u1), . . . , ψi(ur)) : i ∈ [p], (u1, . . . , ur) ∈ αi, ψi ∈ {π′
i, π

′′
i } .

In order for this to occur, every vertex in the image of the ψi must be in the
image of at least two ψi. Let us say that the collection of embeddings is a double
cover if this occurs. Then

EH,π′
i,π

′′
i

p∏
i=1

χπ′
i(αi)(H)χπ′′

i (αi)(H)

= Pπ′
i,π

′′
i
[C is an even collection]

≤ Pπ′
i,π

′′
i
[(π′

i, π
′′
i )i∈[p] is a double cover] . (16)

Let V =
∑p

i=1 |V (αi) \ L|. We claim

Pπ′
i,π

′′
i
[(π′

i, π
′′
i )i∈[p] is a double cover] ≤ (2V )2V

(k − ℓ)(k − ℓ− 1) · · · (k − ℓ− V + 1)
.

(17)
This is based on the following surjection a.k.a union bound. The total number of
vertices mapped by all the permutations is 2V . We take any partition of the 2V
vertices such that every block of the partition has size at least two. There are
at most (2V )2V such partitions. We go through the vertices in some fixed order,
and for each vertex which is not the first member of its block of the partition,
we obtain a factor of ≈ 1

k−ℓ for the probability that the vertex is mapped to the
same element as the other members of its block of the partition. Since the blocks
have size at least two (in order to be a double cover), we obtain at least V factors
of ≈ 1

k−ℓ in this way. We upper bound ≈ 1
k−ℓ by a rising factorial to obtain the

bound in (17).
If V ≤ k−ℓ

2 , then (17) can simplified to

(2V )2V

(k − ℓ)(k − ℓ− 1) · · · (k − ℓ− V + 1)
≤
(

8V 2

k − ℓ

)V

. (18)
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On the other hand, if V ≥ k−ℓ
2 , then the right-hand side is at least 1. Combining

these two possible cases, we conclude,

Pπ′
i,π

′′
i
[(π′

i, π
′′
i )i∈[p] is a double cover] ≤

(
8V 2

k − ℓ

)V

. (19)

Now we return to the main calculation of EHLRD(H,L)2p. Combining (15),
(19),

EHLRD(H,L)2p =
∑

α1,...,αp⊆([n]
r )\(

L
r)

1≤|αi|≤D

E

p∏
i=1

χαi
(G′

i)χαi
(G′′

i )

≤
∑

α1,...,αp⊆([n]
r )\(

L
r)

1≤|αi|≤D

(
8V 2(k − ℓ)

(n− ℓ)2

)V

≤
∑

α1,...,αp⊆([n]
r )\(

L
r)

1≤|αi|≤D

(
8p2D2(k − ℓ)

(n− ℓ)2

)∑p
i=1 |V (αi)\L|

(V ≤ pD)

=

( ∑
α⊆([n]

r )\(
L
r)

1≤|α|≤D

(
8p2D2(k − ℓ)

(n− ℓ)2

)|V (α)\L|)p

The inner summation is nearly the combinatorial quantity we bounded in Equa-
tion (9) when computing EHLRD(H,L)2. The only difference is the factor 8p2D2

which may be larger than what we had before. This factor can be negated by
scaling down k−ℓ

n−ℓ . Using the same counting arguments as before with the slightly
stronger assumption on k, we conclude the desired moment bound.

4 Cryptographic applications

4.1 Hypergraph secret sharing

The secret sharing scheme of Abram et al. was stated for forbidden graph access
structures. The construction extends to partial access structures (R,S) where R
is a collection of r-subsets and S consists of all independent sets of R of size at
most ℓ.

Construction 2. Forbidden hypergraph secret sharing: Syntactically replace
“graph” by “r-uniform hypergraph” and (u, v) by (u1, . . . , ur) in Construction 1.

This scheme reconstructs all {u1, . . . , ur} ∈ R by (2).

Proposition 3. Assume (H,PH,L) and (H,QH,L) are (s, ϵ)-indistinguishable
for all L ⊆ V (H) with |L| = ℓ. Then for every independent set I ⊆ R of size at
most ℓ, shares of 0 and 1 are (s, 2ϵ)-indistinguishable by parties in I.
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Proof. Assume parties in I can 2ϵ-distinguish shares of 0 and 1 using distin-
guisher D. By the triangle inequality, D ϵ-distinguishes (Hs, G, ϕ(i) : i ∈ I)
from (H,G, ϕ(i) : i ∈ I) where

G(u1, . . . , ur) =

{
H(u1, . . . , ur), if u1, . . . , ur ∈ I

a random bit, otherwise.

for at least one value of s. Let D′ be the circuit that, on input (H ′, G, ui : i ∈ I),
outputs D(H ′ ⊕ sR,G, ui : i ∈ I). As R does not contain any hyperedges within
I, by (1), D′(PH,I) is identically distributed to D(Hs, G, ϕ(i) : i ∈ I). As H is
random, D′(QH,I) is identically distributed to D(H,G, ϕ(i) : i ∈ I). Therefore
D′ and D have the same advantage. ⊓⊔

The class of access structures can be expanded to allow the reconstruction
set R to consist of arbitrary sets, as long as the size of all minimal sets is at most
r. This is accomplished by a reduction to size exactly r. Let R′ ⊆ [n+ r− 1] be
the r-uniform hypergraph

R′ =
{
A ∪ {n+ 1, . . . , n+ r − |A|} : A ∈ R

}
.

Construction 3. Apply Construction 2 to R′ with the shares of parties n +
1, . . . , n+ r − 1 made public.

If all sets in R′ can resconstruct in Construction 2 then all sets in R can
reconstruct in Construction 3. As for secrecy, if Construction 2 is secure against
all independent sets in R of size at most ℓ, then Construction 3 is secure against
such sets of size at most ℓ− r + 1.

Could Construction 2 give a provable separation between the minimum share size
of information-theoretic and computational secret sharing? We argue that this is
unlikely barring progress in information-theoretic secret sharing lower bounds.
The share size in Construction 2 is (1 + Ω(1))(log n). However, the share size
lower bounds of [KN90,BGK20] do not exceed log n for any known n-party access
structure.

In contrast, Csirmaz [Csi97] proved that there exists an n-party access struc-
ture with share size Ω(n/ log n). Using Csirmaz’s method, Beimel [Bei23] con-
structed total r-hypergraph access structures that require share sizeΩ(n2−1/(r−1)/r)
for every r ≥ 3.

We argue that Csirmaz’s method cannot prove a lower bound exceeding ℓ
for any (partial) access structures in which secrecy is required to hold only for
sets of size up to ℓ. Csirmaz showed that a scheme with share size s implies the
existence of a monotone submodular function f (the joint entropy of the shares
in A) from subsets of {1, . . . , n} to real numbers that satisfies the additional
constraints

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) + 1 if A,B ∈ S and A ∪B ∈ R (20)
f(A) ≤ s for all A of size 1. (21)
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Proposition 4. Assuming all sets in S have size at most ℓ, there exists a mono-
tone submodular function satisfying (20) and (21) with s = ℓ.

As our scheme does not tolerate Ω(log n) bits of leakage, the best share size
lower bound that can be proved using Csirmaz’s relaxation of secret sharing is
ℓ = o(log n). The proof of Proposition 4 is a natural generalization of [Csi97,
Theorem 3.5] to partial access structures.

Proof (Proposition 4). The function f(A) =
∑|A|

t=1 max{ℓ−t+1, 0} is monotone,
submodular, satisfies (20) for every R ⊆ S, and (21) with s = ℓ. ⊓⊔

4.2 Multiparty PSM for random functions

Given a function F : [k]r → {±1}, the random hypergraph embedding of F is
the r-hypergraph F on rk vertices (x, i) : x ∈ [k], i ∈ [r] such that

F ((x1, 1), . . . , (xr, r)) = F (x1, . . . , xr).

All other potential hyperedges of F are sampled uniformly and independently
at random.

We describe the r-partite generalization of Abram et al.’s PSM protocol. Let
ϕ : [k] × [r] → [n] be a random injection and let G be the r-hypergraph on n
vertices given by

G(u1, . . . , ur) =

{
F (ϕ−1(u1), . . . , ϕ

−1(ur)), if ϕ−1(u1), . . . , ϕ
−1(ur) exist

a random bit, otherwise.

Construction 4. r-party PSM protocol for F :

In the setup phase, G is published and ϕ is privately given to the parties.
In the evaluation phase,

1. Party i is given input xi.
2. Party i forwards ui = ϕ(xi, i) to the evaluator.
3. The evaluator outputs G(u1, . . . , ur).

The protocol is clearly functional. A reasonable notion of security with re-
spect to random functions F should allow the parties’ input choices to depend
on F . An input selector is a randomized function I that, on input F , produces
inputs I(F ) = (x1, . . . , xr) for the r parties.

We say a protocol is (s′, s, ϵ) (simulation) secure against a random function
if for every input selector I there exists a size-s′ simulator S for which the
distributions

(F,G, ϕ(x1, 1), . . . , ϕ(xr, r)) and (F, S(F, F (x1, . . . , xr))) (22)

are (s, ϵ)-indistinguishable, where (x1, . . . , xr) is the output of I(F ).
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Proposition 5. Assume (H,G,L(H)) with G ∼ PH,L(H) versus G ∼ QH,L(H)

are (s, ϵ)-indistinguishable with parameters |V (H)| = kr, |V (G)| = n, and ℓ = r.
Then Construction 4 is (O(

(
n
r

)
), s−O(

(
n
r

)
), ϵ)-secure.

We label the vertices of H by pairs (x, r) ∈ [k]× [r].

Proof. On input (F, y), the simulator S

1. chooses random u1, . . . , ur ∈ [n]
2. sets G(u1, . . . , ur) = y
3. samples all other possible hyperedges of G independently at random
4. outputs (G, u1, . . . , ur).

We describe a reduction R that, given a distinguisher D for (22), tells apart
(H,G,L(H)) with G ∼ PH,L(H) versus G ∼ QH,L(H) for some leakage function
L. On input (H,G, z1, . . . , zr),

1. set F to be the function F (x1, . . . , xr) = H((x1, 1), . . . , (xr, r))
2. output (F, π(G), π(z1), . . . , π(zr)) for a random permutation π on [n] (which

acts on G as a hypergraph isomorphism).

Let L be the leakage function that, on inputH, runs I(F ) to obtain (x1, . . . , xr),
and outputs ((x1, 1), . . . , (xr, r)).

This reduction preserves distinguishing advantage as it maps the distribu-
tions (22) into the distributions (H,PH,L(H), L(H)) and (H,QH,L(H), L(H)),
respectively. It can be implemented in size O(

(
n
r

)
), giving the desired parame-

ters. ⊓⊔
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