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Abstract

We study random constraint satisfaction problems (CSPs) at large clause density. We relate
the structure of near-optimal solutions for any Boolean Max-CSP to that for an associated spin
glass on the hypercube, using the Guerra-Toninelli interpolation from statistical physics. The
noise stability polynomial of the CSP’s predicate is, up to a constant, the mixture polynomial of
the associated spin glass. We show two main consequences:

1. We prove that the maximum fraction of constraints that can be satisfied in a random
Max-CSP at large clause density is determined by the ground state energy density of
the corresponding spin glass. Since the latter value can be computed with the Parisi
formula [Par80, Tal06, AC17], we provide numerical values for some popular CSPs.

2. We prove that a Max-CSP at large clause density possesses generalized versions of the
overlap gap property if and only if the same holds for the corresponding spin glass. We
transfer results from [HS21] to obstruct algorithms with overlap concentration on a large
class of Max-CSPs. This immediately includes local classical and local quantum algorithms
[CLSS22].
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1 Introduction
In this work, we formalize a general and deep connection between two intensely studied classes
of optimization problems: constraint satisfaction problems (CSPs), studied in computer science,
and spin glass models, studied in statistical physics. We demonstrate that as the clause density
of the random CSP increases, the geometric properties of the set of nearly-optimal solutions
converge to those of a corresponding spin glass model. In these spin glass models, the very same
geometric properties imply bounds on the average-case approximability achieved by broad classes
of algorithms [AMS21b, GJW20, GJ21]; these bounds are conjectured to be the best possible among
all polynomial-time algorithms [Gam21, HS21]. The correspondence we establish here implies that
the same lower bounds apply to average-case CSPs.

CSPs are paradigmatic computational tasks. Their study has led to foundational results in
computational hardness, approximability, and optimization [Pas13]. In recent years, we have learned
more about CSPs through methods inspired by statistical physics, especially when the clauses of
the CSP are chosen randomly [DSS16b, DSS16a, DMS17, Sen18, DSS22]. By identifying the solution
quality of a variable assignment with the energy of a configuration of particles, we can investigate
“physical” properties of the CSP, such as phase transitions or solution clustering at different
temperatures. Surprisingly, these physical properties can have computational consequences.

We study random CSP instances with Boolean variables, random literal signs, and number of
constraints which is a large constant times the number of variables, such that each constraint acts
on a constant number of variables. If n is the number of variables, then m = αn is the number
of constraints for some constant α. For large enough α, the CSP is unsatisfiable with probability
1− on(1). Therefore the goal is to find a variable assignment that maximizes the number of satisfied
constraints, and we think of these as Max-CSPs.

Given a random Max-CSP, how many constraints can be satisfied? How are the best assignments
distributed around the hypercube? Can we find these assignments with efficient algorithms?
Statistical physicists use questions like these to investigate the solution geometry of a problem. Our
main result connects the solution geometry of a Max-CSP (with large enough α) to that of a spin
glass. As a consequence, much of our mathematical and algorithmic understanding of spin glasses
transfers to CSPs at large clause density.

A spin glass (more properly a mixed mean-field spin glass) is a random system of n particles (variables)
specified by a mixture polynomial ξ(s) =

∑
p≥1 c2

psp. In this model, the interaction strength between
every p-tuple of particles is an independent Gaussian with variance c2

pn1−p; this can be thought of
as a randomly-weighted CSP on the complete p-uniform hypergraph. We show that as the clause
density of any random CSP increases (α→∞), the solution space starts to resemble that of a spin
glass. For example, Max-Cut on random graphs with large constant average degree qualitatively
looks like the Sherrington-Kirkpatrick model, where c2 = 1, {ci}i,2 = 0 [SK75, DMS17]. (Note that our
proof applies to Max-2XOR instead of Max-Cut, so we do not recover this result exactly.)

1.1 Main results

Formally, we relate the free energy density of a random Max-CSP instance to that of a particular spin
glass. The associated spin glass is determined only by the Fourier weights of the CSP. In fact, the
mixture polynomial of the spin glass is, up to a constant, the noise stability polynomial of the CSP
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(see Section 2 for definitions):

Theorem 1.1 (Free energy density). Generate a random CSP instanceI (with cost function HI) consisting
of α · n independent and uniform constraints of a predicate f : {±1}k → {0, 1} with randomly signed literals.
Define the polynomial

ξ(s) = Stabs( f ) − f̂ (∅)2 =
k∑

j=1

∥ f= j
∥

2s j , (1)

where Stabs( f ) is the noise stability polynomial of f , and ∥ f= j
∥

2 is the Fourier weight of f at degree j.
Generate a random spin glass instance Hξ with mixture polynomial ξ.

Let β > 0, and define ZI(β) =
∑
σ∈{±1}n eβHI(σ) and ZSGξ(β) =

∑
σ∈{±1}n eβH

ξ(σ) as the respective partition
functions. Then

1
βn

log ZI(β) = f̂ (∅) +
1
βn

log ZSGξ(β)
√
α

+ O
(
β2

α2

)
+ on (1) . (2)

where the second-to-last term (which may depend on n) satisfies
∣∣∣∣∣O (

β2

α2

)∣∣∣∣∣ ≤ C · β
2

α2 whenever βα ≤ ε0 for

absolute constants C, ε0 > 0, and the last term is random and is on (1) w.h.p.

Prior work relates the free energy density of specific CSPs such as Max-kXOR [DMS17, Sen18] and
Max-kSAT [Pan18] to that of a spin glass. Theorem 1.1 generalizes this connection to any random
Max-CSP with randomly signed literals.

The asymptotic equivalence of the free energy density implies the equivalence of several properties
of the solution geometry for large enough α. We show two specific implications of Theorem 1.1.
The first is that the optimal value of a random Max-CSP in the large clause density limit can be
found with a spin glass calculation.

Corollary 1.2. (Optimal value equivalence). Generate a random CSP instance I consisting of α · n
independent and uniform constraints of a predicate f : {±1}k → {0, 1} with randomly signed literals. Let vI
be the maximum fraction of constraints of I that can be satisfied. Let ξ be defined as in Equation (1), and
GSED(SGξ) as the (non-random) ground state energy density of the associated spin glass. Then

vI = f̂ (∅) +
GSED(SGξ)

√
α

+ o
(

1
√
α

)
. (3)

where the last term is at most κ(n,α) w.h.p for a function κ(n,α) satisfying κ(n,α) ·
√
α→ 0 as n→∞

then α→∞.

Computing the minimum value, or ground state energy, of a spin glass can famously be done
using the Parisi formula. In Section 4, we use the Parisi formula to compute GSED(SGξ) for several
common CSPs (our code is available online).

The second implication relates to algorithmic hardness.1 Intuitively, when global minima are
located in clusters, some algorithms cannot efficiently find them. A recent body of work (starting

1For this implication, we need to boost Theorem 1.1 to interpolate the free energy density restricted to any given
overlap and correlation structure.
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with [GS14]) has pinpointed hardness on the presence of an overlap gap property (OGP), showing how
this property obstructs noise-stable algorithms from (1− ε)-approximating average-case instances.
We show that a flexible version of the OGP, called the branching OGP [HS21], exists on a spin
glass exactly when it exists on the associated Max-CSP at large enough clause density. As a result,
the techniques that obstruct algorithms on certain spin glasses also work on the corresponding
Max-CSPs.

Corollary 1.3 (OGP equivalence, informal). Take any Max-CSP. Consider the associated spin glass SGξ,
where ξ is defined as in Equation (1). Then SGξ exhibits an OGP at value v if and only if the Max-CSP
exhibits an OGP at value f̂ (∅) + v

√
α

for all sufficiently large α.

The formal class of algorithms we obstruct is as follows [HS21]. Consider two correlated instances
with correlation parameter t ∈ [0, 1]. A deterministic2 algorithm is overlap-concentrated if for every
t, the overlap (a.k.a the Hamming distance) between the two output assignments for the two
correlated instances is concentrated inside a narrow interval. This is a notion of noise robustness
that many commonly-used algorithms have, including approximately Lipschitz algorithms on spin
glasses [HS21] and local classical and local quantum algorithms on random Max-CSPs [CLSS22].
Additionally, survey propagation with a constant number of message-passing rounds likely has
this property [BMZ05, Gam21, BH22].

Theorem 1.4 (OGP obstructs algorithms with overlap concentration, informal). Consider an algorithm
A with overlap concentration. ThenA cannot output arbitrarily good approximate solutions on instances
of Max-CSPs which exhibit an OGP.

Our proof of Theorem 1.4 follows that of Huang and Sellke [HS21], who prove the same result on
spin glasses. Only a few changes are needed to transfer their result to Max-CSPs. Note that this
result also applies to CSPs with small α if they exhibit an OGP.

It is known that an OGP (specifically, a branching OGP) exists with high probability on spin glasses
with even mixture polynomials without quadratic terms [CGPR19, HS21]. Combining this with the
results that we have stated, we conclude the following:

Corollary 1.5 (informal). Consider a random Max-CSP with a predicate f such that the only nonzero
Fourier coefficients of f have even degree j ≥ 4. For almost all instances of the Max-CSP, no algorithm with
overlap concentration can output (1− ε)-approximately optimal solutions for all ε > 0.

For example, this unconditionally obstructs overlap concentrated algorithms from approximating
random 4XOR instances.

Corollary 1.3 makes progress on [CLSS22, Problem 9.2 (arXiv version)], asking which CSPs exhibit
an OGP at large clause density. A full characterization of spin glasses with an OGP, and thereby
CSPs in the large α limit, is not complete (although spherical spin glasses have been classified [Sub18,
Proposition 1]). For example, the Sherrington-Kirkpatrick model is strongly suspected to have no
OGP, but this is not fully proven [ACZ20].

We cannot help but mention that these topological properties of the solution space (i.e. the solution
geometry) may precisely characterize the algorithmic approximability of spin glasses and random

2A randomized algorithm is overlap-concentrated if it is overlap-concentrated for every fixing of the randomness.
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CSPs [ACO08]. For spin glasses, the following is known:

Theorem 1.6. For all spin glasses SGξ, there is a value ALG (given by an extended Parisi formula) such
that:

1. [Mon21, AMS21b, Sel21] Assume that the minimizer of the extended Parisi functional for SGξ exists.
Then for all ε > 0, there is an efficient algorithm that outputs a solution with value ALG− ε on almost
all instances.

2. [HS21] Assume the mixture polynomial ξ is even. For all ε > 0, the spin glass exhibits a branching
OGP with value ALG + ε, which therefore obstructs overlap-concentrated algorithms from achieving
this value on almost all instances.

It is likely the case that the same holds for CSPs with sufficiently large α. Specifically, there are
explicitly computable constants ALG ≤ OPT for any CSP predicate f such that the optimum value
of the CSP is about f̂ (∅) + OPT

√
α

(Corollary 1.2), but the threshold for efficient algorithms appears to

be f̂ (∅) + ALG
√
α

. In this paper we prove that the lower bound transfers (Part 2). The upper bound
(Part 1) is known for Max-Cut by [AMS21a], and can likely be generalized to an arbitrary CSP (in a
similar way that [AMS21b] generalizes [Mon21] for spin glasses). Existence of an OGP may also
characterize approximability of random CSPs for small α, but proving this is significantly more
difficult.

The paper is organized as follows. We provide formal definitions and additional motivation in
Section 2. In Section 3, we give the main interpolation between every Max-CSP and a related spin
glass. In Section 4, we show how this implies equivalence of optimal value (Corollary 1.2), and
list numerical approximations to optimal values of several common Max-CSPs. In Section 5, we
prove that the main interpolation implies the equivalence of OGPs (Corollary 1.3). In Section 6, we
prove that an OGP obstructs overlap-concentrated algorithms on Max-CSPs (Theorem 1.4) and
conclude Corollary 1.5. We close with a discussion in Section 7. The appendices contain some
technical proofs.

1.2 Related work

Spin glasses. Spin glasses as a state of matter have been studied since the early 20th century. They
were first considered as metallic alloys with many ground states, in which the magnetic spins of
the individual particles in the alloy are frustrated (i.e. many nearby spins are mismatched). In the
language of CSPs, spin glasses have exponentially many near-optimal solutions, in which many
constraints are unsatisfied. In this work, we reserve the term “spin glass” for mean-field spin glass
models, where “mean-field” means that all pairwise (or higher arity) interactions between particles
are present. The spins (i.e. the possible values for each variable) are Boolean (also called Ising) for
all spin glasses that we consider, although in other physical and mathematical settings they may be
[q]-valued or vector-valued.

The Sherrington-Kirkpatrick model is an early mathematical model of a spin glass [SK75]. It
was solved (by deriving an explicit formula for the free energy density) by Parisi [Par80], but
the solution relied on non-mathematically rigorous physical arguments. A later series of works
[Gue03, Tal06, Pan13] proved that the formula is correct for all mixed spin glass models. Its
numerical value was carefully approximated for the Sherrington-Kirkpatrick model [CR02] and
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more recently for other mixed spin glasses [AM20, MH22].

Random CSPs through the lens of statistical physics. Statistical physicists have studied random
instances of combinatorial optimization problems since at least the 1980s [FA86, MPV87]. A
partial “dictionary” converting between the language of computer science and physics is provided
in [CLSS22, Table 1].

Several modern works use the Guerra-Toninelli interpolation [GT04] in a similar technical way
as our work; the interpolation method is by now a standard tool in spin glass theory. Dembo,
Montanari, and Sen [DMS17] applied the interpolation to prove that the size of the Max-Cut and
Max-Bisection in a random d-regular or Erdős-Rényi graph is related to the Sherrington-Kirkpatrick
model in the same way as Corollary 1.2. The interpolation was later used (with different spin
glass models) to determine the optimal value of random Max-kSAT [Pan18], Max-kXOR and
Max q-cut [Sen18] instances in the highly unsatisfiable regime. Compared to these works, our
Theorem 1.1 generalizes the CSP predicate to arbitrary mixtures of Boolean functions, but they must
have random signs on the literals (e.g. Max-2XOR instead of Max-Cut; this is used in the debiasing
argument (Appendix C) and to simplify a technical part of the proof (Equation (54)). We are not
certain which of our results extend without random signs. We also extend the Guerra-Toninelli
interpolation (in Theorem 3.5) to transfer more properties of the solution geometry than just the
optimal value; this is exactly what allows us to compare results on algorithmic hardness.

In this paper, we study the highly unsatisfiable regime, where the number of clauses of the CSP is αn
for some large constant α. When the clause density α is smaller, for example near the satisfiability
threshold of the CSP, the exact connection with spin glasses breaks down, and existing results are
less unified. Nonetheless, methods inspired by statistical physics continue to give powerful insight
into the solution structure of these CSPs [AM02, ART06, PT04, DSS16b, DSS16a, DSS22].

Overlap gaps. When near-optimal solutions are clustered, it becomes impossible for many
algorithms to find them. From a geometric perspective, we can’t “move” from one cluster to
others without passing through a lower-value assignment. This general phenomenon was named
the overlap gap property (OGP) and it was shown to obstruct local algorithms [GS14]. Further
generalizations of overlaps [CGPR19, HS21] show stronger obstructions on wider classes of
algorithms. The OGP and its generalizations have been used to obstruct algorithms from finding
near-optimal solutions of various quantities in mixed spin glasses [GJW20, GJ21, HS21, Sel21],
CSPs [CGPR19, BH22, CLSS22], sparse random graphs [GS14, RV17], and matrices [GL18, AWZ20].
See [Gam21, Hua22] for a survey of overlaps and solution geometry.

Optimizing spin glasses and random Max-CSPs. Recently, [AMS21b, Sel21] showed that a type
of approximate message-passing algorithm finds the ground state energy of spin glasses without
overlap gaps. Under the same assumption, a version of this algorithm was also shown to be optimal
on Max-Cut for sparse random graphs with constant (but sufficiently large) degree [AMS21a]. Both
the Sherrington-Kirkpatrick model and Max-Cut on sparse random graphs are strongly suspected
to have no overlap gaps [ACZ20].

There has been some study of a near-term quantum algorithm (the QAOA [FGG14]) optimizing
spin glasses, with recently-proven rigorous performance bounds [CvD21, FGGZ22]. In fact, for
large enough clause density, the performance of the QAOA is identical on a random instance of
Max-kXOR and on its corresponding spin glass [BM21, BFM+22, BGMZ22].

5



2 Preliminaries
2.1 Random constraint satisfaction problems (CSPs)

A CSP instance, denoted I, consists of n variables and a set of constraints, denoted E(I). In a
random CSP instance, the constraints E(I) are drawn from a distribution Λ on functions f : Σk

→ R.

Definition 2.1 (Instance of a random CSP). Let Λ be a distribution on functions f : Σk
→ [−1, 1] with

alphabet Σ = {±1}. Fix a constant α > 0. Then, a random CSP over n variables {σi}
n
i=1 and m = αn

clauses is generated by: for each i = 1, . . . , m, draw i1, . . . , ik uniformly i.i.d from [n], draw f ∼ Λ, draw
k random signs εi uniformly i.i.d from {±1}, and add the constraint e to E(I), describing the clause
fe(σe) := f (ε1σi1 , . . . , εkσik).

Remark 2.2. The canonical case is to take Λ which is supported on a single predicate f : Σk
→ {0, 1}. For

example, the OR predicate corresponds to kSAT. Our proofs apply to the more general setting of Definition 2.1,
but it does not apply to |Σ| > 2 or instances without random signs. Note that the constraints are scaled so
that the output of f is always in the interval [−1,+1]. Predicates of mixed arity may be simulated using
k-ary predicates that ignore some input variables.

We denote this random model as CSPΛ(α). We study the highly unsatisfiable regime; for example,
one can think of α≫ exp(k).

In this work, we use the language of Hamiltonians. In other settings this quantity may be called the
objective function, the value, or the score of the assignment.

Definition 2.3 (CSP Hamiltonian). Consider a CSPΛ(α) instance I on [n]. For any input σ ∈ {±1}n let

Hα(σ) =
1
α

∑
e∈E(I)

fe(σe) . (4)

Remark 2.4. We divide by α so that, regardless of the value of α, the value of the Hamiltonian is in the same
interval [−n,+n].

Definition 2.5 (Optimal value of a CSP instance). Define the maximum or optimal value of a CSPΛ(α)
instance I by:

vI =
1
n

max
σ∈{±1}n

Hα(σ) . (5)

When the predicates in the CSP are 0/1-valued, the maximum value of a CSP instance I is the
maximum possible fraction of constraints that can be satisfied.

Remark 2.6. By a union bound, with high probability all assignments to a random CSP with predicate f
satisfy f̂ (∅) + O( 1

√
α
) fraction of constraints. The purpose of our work is to precisely study the behavior of

the 1
√
α

term.

Remark 2.7. The constraints of an instance of CSPΛ(α) are slightly dependent because of the fixed number
of edges m = αn. In the proof we will pass to the “Poisson model” in which the number of edges is Pois(αn),
or equivalently, the multiplicity of each constraint is an i.i.d Pois

(
α

2knk−1

)
random variable.
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2.2 Mean-field spin glasses

Let n denote the number of particles or variables in the system. We introduce the mathematical
objects describing a spin glass:

Definition 2.8 (Mixture polynomial). A mixture polynomial is ξ(s) =
∑k

p≥1 c2
psp for some nonnegative

coefficients c2
p.

Definition 2.9 (Gaussian disorder). The disorder coefficients J(p) are an order-p tensor where each axis
has length n. When J(p) is a Gaussian tensor, we say that there is Gaussian disorder. Specifically, for each
(i1, . . . , ip) ∈ [n]p, we have J(p)[i1, . . . , ip] ∼ N(0, 1) i.i.d.3

We now have enough to define our spin glasses. The mixture polynomial specifies the random
model, and the disorder coefficients determine the instance of the model. For example, ξ(s) = s2

(or ξ(s) = s2/2 in some works) specifies the well-studied Sherrington-Kirkpatrick spin glass model.

Definition 2.10 (Finite mixed spin glass). Fix a mixture polynomial ξ. A spin glass is a random
Hamiltonian Hξ : {±1}n → R given by sampling Gaussian disorder J := (J(p) : p = 1, 2, . . . ), where the
J(p) are independent, then

Hξ(σ) =
k∑

p=1

cp

n(p−1)/2

〈
J(p), σ⊗p

〉
=

k∑
p=1

cp

n(p−1)/2

∑
(i1,...,ip)∈[n]p

J(p)[i1, . . . , ip]σi1 . . . σip . (6)

We say that Hξ is an instance of the random model SGξ.

SGξ is also known as the mixed p-spin model4 (in contrast to the pure p-spin model, in which the
mixture polynomial is sp, i.e. all interactions have the same size p).

An early motivator of spin glass theory was the conjecture (and eventual proof) of the following
representation for the ground state energy of the model:

Theorem 2.11 (Parisi formula [Par80, Gue03, Tal06, Pan14, AC17]). Fix any spin glass model SGξ.
Sample a sequence of independent instances {Hξn=1, Hξn=2, ...} from SGξ for increasing values of n. Then the
limit

GSED(SGξ) := lim
n→∞

max
σ∈{±1}n

1
n

Hξn(σ) , (7)

almost surely exists. Furthermore,

GSED(SGξ)
a.s.
= min
ζ∈U
P
ξ
∞(ζ) , (8)

where Pξ∞ is the Parisi functional at zero temperature with mixture polynomial ξ. The Parisi functional at
zero temperature and the setU are defined in Definition 4.2.

3We follow the definition in [Pan13, Chapter 2]. Some definitions of Gaussian disorder use a symmetric Gaussian
tensor, which is equivalent up to scaling of the ck and on(1) change in the free energy density. This is because the models
only differ on tensor entries [i1, . . . , ip] such that i1, . . . , ip are not all distinct, which only make up on(1) fraction of all
entries of the tensor.

4The p = 1 term is a Gaussian external field. Some spin glass models are instead defined with a fixed external field.
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We state one other fact about spin glasses. One way to characterize a spin glass is as a Gaussian
process on the state space {±1}n with covariance structure given by the mixture polynomial ξ. The
covariance of the Gaussians Hξ(σ1), Hξ(σ2) is a function of the normalized inner product, or overlap,
of σ1 and σ2.

Fact 2.12 (Gaussian characterization of a spin glass). Let {Hξ(σ)}σ∈{±1}n be a spin glass instance of the
random model SGξ. Then these variables are jointly Gaussian, with mean zero and covariance

E
[
Hξ(σ1)Hξ(σ2)

]
= n · ξ

(
⟨σ1, σ2⟩

n

)
, (9)

where ⟨· , ·⟩ is the standard inner product.

2.3 Solution geometry of optimization problems

Solution geometry refers to the distribution of the optimal and near-optimal solutions on the Boolean
hypercube. Given a Hamiltonian H : {±1}n → R, what do we mean by “near-optimal solutions”?
We consider two notions. The first, used when considering computational tasks, is the set of σ such
that H(σ) ≥ v for some value v. The second, a “smoother” notion from statistical physics, is that
near-optimal solutions are samples from a low-temperature Gibbs distribution.

Definition 2.13 (Gibbs distribution). Given a Hamiltonian H : {±1}n → R and an inverse temperature
parameter β ≥ 0, the Gibbs distribution is the distribution on {±1}n with probability proportional to eβH(·).

Definition 2.14 (Partition function). The partition function of H is the normalizing constant of the Gibbs
distribution, i.e. the exponentially-weighted sum

ZH(β) =
∑
σ∈{±1}n

eβH(σ) . (10)

The most important geometric notion is the overlap of two assignments, which is exactly the
normalized inner product and is linearly proportional to the Hamming distance between the
assignments:

Definition 2.15 (Overlap). The overlap between two assignments (configurations) σ1, σ2 ∈ {±1}n is the
normalized inner product,

R(σ1, σ2) =
⟨σ1, σ2⟩

n
. (11)

Note that the overlap is always in [−1, 1]. We study the distribution of R(σ1, σ2) when σ1, σ2 are
independently sampled near-optimal solutions. Roughly speaking, a gap in the support of this
distributions (i.e. an overlap gap) implies obstructions for some types of algorithms.

We also study pairwise overlaps between more than two samples. An example is the distribution of
the 3-tuple of overlaps in a “triangle” of independent near-optimal solutions σ1, σ2, σ3. Topological
gaps in this distribution will also obstruct algorithms. The generalization of overlap used in this
paper is the I-overlap; given a set σ of |σ| = ℓ assignments, each in {±1}n, we define an overlap value
for every subset of σ.
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Definition 2.16 (I-overlap). Consider any σ := (σ1, . . . , σℓ) ∈ ({±1}n)ℓ and any I ⊆ [ℓ]. Define the
I-overlap of σ as

RI(σ) =
1
n

n∑
j=1

∏
i∈I

(σi) j . (12)

The I-overlap recovers the definition of overlap when I has two elements.

We define an overlap vector to associate a set of ℓ assignments with all of its possible I-overlaps:

Definition 2.17 (Overlap vector). Consider any σ := (σ1, . . . , σℓ) ∈ ({±1}n)ℓ. Then its overlap vector
Q(σ) ∈ [−1, 1]2

[ℓ]
lists all possible I-overlaps; that is, Q(σ)I = RI(σ) for every I ∈ 2[ℓ].

Definition 2.18 (Overlap polytope). Consider the set of all possible overlap vectors Q(σ) for any positive
n ∈N and sets of vectors σ ∈ ({±1}n)ℓ. Then R(ℓ)

⊆ [−1, 1]2
[ℓ]

is the closure of this set. Formally,

R
(ℓ) = {Q(σ) : n ∈N , σ ∈ ({±1}n)ℓ} . (13)

Remark 2.19. Since R∅(σ) = 0 for all σ, we can ignore this coordinate, and then R(ℓ) is a non-degenerate
convex polytope in R2ℓ−1. For example, R(2) is a regular tetrahedron in R3.

Definition 2.20 (Preimage of overlap vectors). For any open subset S ⊆ R(ℓ) (in the Euclidean subset
topology of R(ℓ)), let U(ℓ)

n (S) ⊆ ({±1}n)ℓ be the preimage of S in dimension n; i.e. the set of σ ∈ ({±1}n)ℓ

such that Q(σ) ∈ S. We drop the superscript when ℓ is in context.

We are interested in the distribution on R(ℓ) of the overlap vector Q(σ1, . . . , σℓ) when σ1, . . . , σℓ are
independently sampled near-optimal solutions.5 Our main result shows that the support of this
distribution for a Max-CSP in the n → ∞ then α → ∞ limit equals that of a corresponding spin
glass. Hence, overlap gaps (formally defined in Section 5) transfer between the two models.

The proof uses the concept of free energy, defined as the logarithm of the partition function.

Definition 2.21 (Free energy). The free energy of H is log ZH(β).

The free energy at low temperature (β→∞) matches the optimal value of the Hamiltonian. This is
a commonly-used fact (for example, [Pan13, Equation 1.7]); we include the short proof.

Fact 2.22. The maximum value of a Hamiltonian H : Ω → R on a finite domain Ω is related to its free
energy by

max
σ∈Ω

H(σ) ≤
1
β

log ZH(β) ≤ max
σ∈Ω

H(σ) +
log |Ω|
β

. (14)

Proof. We have

1
β

log
∑
σ∈Ω

exp (βH(σ)) ≥ max
σ∈Ω

1
β

log exp (βH(σ)) = max
σ∈Ω

H(σ) , (15)

5It is likely that the distribution converges in some sense as n → ∞, and then converges again as β → ∞, but our
proof does not show this nor use this.
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and

1
β

log
∑
σ∈Ω

exp (βH(σ)) ≤ max
σ∈Ω

1
β

log |Ω| exp (βH(σ)) = max
σ∈Ω

H(σ) +
log |Ω|
β

. (16)

□

2.3.1 Extended remark on multi-overlaps

The I-overlap for |I| > 2 is a type of multi-overlap, i.e. a higher-order version of the standard overlap.
In fact, the structures we will use to obstruct algorithms only constrain the pairwise overlaps with
|I| = 2. The pairwise overlaps characterize functions that are rotationally-invariant. Multi-overlaps
may be useful when studying CSPs at small α; see the concluding remarks in Section 7.

The I-overlap is general enough to capture any property of the solution geometry which is
permutation-invariant under the action of Sn permuting the bits of {±1}n. Formally, we have the
following:

Definition 2.23 (Permutation-invariant function). Let a permutation π ∈ Sn act on σ ∈ {±1}n as
σπi = σπ(i) and on a function f : {±1}n → R (extended coordinate-wise to f : ({±1}n)ℓ → R) as
fπ(σ) = f (σπ). Then f is permutation-invariant if it is fixed by all π.

Fact 2.24. Any permutation-invariant function f : ({±1}n)ℓ → R can be expressed as a function on R(ℓ),

f (σ1, . . . , σℓ) = f (Q(σ1, . . . , σℓ)) . (17)

If f (σ1, . . . , σℓ) is additionally invariant under the action of Sℓ which permutes the inputs then f is
determined by the overlaps R{1}, R{1,2}, R{1,2,3}, . . . , R{1,2,3,...,ℓ}. The corresponding overlap polytope is
[−1,+1]ℓ, which is significantly smaller and simpler. These overlaps are a more common definition
of multi-overlap than Definition 2.16 [BP22].

2.4 Fourier analysis on the hypercube

Fourier analysis is commonly used to study Boolean functions [O’D14]. For example, the Fourier
basis provides a convenient way to understand the action of linear operators on a Boolean function.

We consider the space of Boolean functions f : {±1}k → R with the expectation inner product, over
the uniform distribution on {±1}n. These functions have a canonical decomposition.

Definition 2.25 (Fourier spectrum of a Boolean function). Every function f : {±1}k → R permits a
unique decomposition as a linear combination of parity functions. Specifically,

f (σ) =
∑
S⊆[k]

f̂ (S)
∏
i∈S

σi , (18)

where f̂ (S) are called the Fourier coefficients.

One can verify that the monomials
{∏

i∈S σi
}
S⊆[k] form an orthonormal basis, often called the Fourier

basis.

Recall that the average value of f is exactly the Fourier coefficient of the empty set:
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Fact 2.26. Eσ∈{±1}n [ f (σ)] = f̂ (∅).

We also consider the noise stability of a Boolean function, which describes how resistant the function
is to independent noise on its input bits.

Definition 2.27 (ρ-correlated). Fix σ ∈ {±1}k and ρ ∈ [−1,+1]. Then a random sample τ of the distribution
Nρ(σ) chooses each spin τi independently as

τi =

σi with probability 1+ρ
2 ,

−σi with probability 1−ρ
2 .

(19)

Since Eτ∼Nρ(σ)[τiσi] = ρ, we say that τ is ρ-correlated with σ.

Definition 2.28 (Noise stability of a Boolean function around a point). For ρ ∈ [−1,+1], define the
noise stability of the Boolean function f : {±1}k → R around point σ ∈ {±1}n as

Stabρ[ f ](σ) = E
τ∼Nρ(σ)

[
f (σ) f (τ)

]
. (20)

Definition 2.29 (Noise stability of a Boolean function). The noise stability of a Boolean function
f : {±1}k → R is defined as

Stabρ[ f ] = E
σ∼{±1}k

 E
τ∼Nρ(σ)

[ f (σ) f (τ)]

 = E
σ∼{±1}k

[
Stabρ[ f ](σ)

]
. (21)

Fact 2.30 ([O’D14, Theorem 2.49]).

Stabρ[ f ] =
∑
S⊆[k]

ρ|S| f̂ (S)2 =
k∑

j=0

ρ j
∥ f= j
∥

2 , (22)

where ∥ f= j
∥

2 =
∑

T⊆[k],|T|= j f̂ (T)2 is the Fourier weight of the jth Fourier level of f .

2.5 Concentration inequalities

In the probabilistic combinatorics literature, “with high probability” means with probability
1− on(1), where f = on(1) denotes limn→∞

f (n)
1(n) = 0.

Remark 2.31. All of the quantities that we consider are exponentially concentrated. As a consequence,
for all ε > 0, the stated theorems hold with ε slack with probability at least 1− exp(−Cn), for some C > 0
depending on ε. For ease of exposition, we have opted to simply state the results with high probability.

Lemma 2.32 (Concentration under spin glass Gibbs distribution, [Pan13, Theorem 1.2]). Let β > 0
and f : {±1}n → R≥0 be arbitrary. Let {H(σ)}σ∈{±1}n be a Gaussian process such that E H(σ)2

≤ s2 for all
σ ∈ {±1}n. Let X = log

∑
σ∈{±1}n exp(βH(σ)) f (σ). Then for all x ≥ 0,

Pr
[∣∣∣X −E X

∣∣∣ ≥ x
]
≤ 2 exp

(
−x2

4s2β2

)
. (23)
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For a spin glass Hξ, we will think of X as having mean C · n + o(n), which formally holds if f
satisfies exp(−C′ · n) ≤ f (σ) ≤ exp(C′ · n) for all σ. By Fact 2.12, E Hξ(σ)2 = n · ξ(1) = O(n), so X
typically fluctuates by only O(

√
n). An important special case of this concentration inequality is

concentration of the maximum value of H. The proof is in Appendix A.

Corollary 2.33. Let {H(σ)}σ∈{±1}n be a Gaussian process such that E H(σ)2
≤ s2 for all σ ∈ {±1}n. Then

for all x ≥ 0,

Pr
[∣∣∣∣∣ max
σ∈{±1}n

H(σ) −E max
σ∈{±1}n

H(σ)

∣∣∣∣∣ ≥ x
]
≤ 2 exp

(
−x2

4s2

)
. (24)

We use a similar concentration inequality for the CSP setting. The proof is found in Appendix A.

Lemma 2.34 (Concentration under CSP Gibbs distribution). Let β > 0 and f : {±1}n → R≥0 be
arbitrary. Let {H(σ)}σ∈{±1}n be a sample from CSPΛ(α). Let X = log

∑
σ∈{±1}n exp(βH(σ)) f (σ). Then for

all x ≥ 0,

Pr
[∣∣∣X −E X

∣∣∣ ≥ x
]
≤ 2 exp

 −x2α

4(n + x
β )β

2

 . (25)

Exactly analogously to Corollary 2.33, we conclude concentration of the max.

Corollary 2.35. Let {H(σ)}σ∈{±1}n be a sample from CSPΛ(α). Then for all x ≥ 0,

Pr
[∣∣∣∣∣ max
σ∈{±1}n

H(σ) −E max
σ∈{±1}n

H(σ)

∣∣∣∣∣ ≥ x
]
≤ 2 exp

(
−x2α

4(n + x)

)
. (26)

3 Sparse and dense models have the same free energy
In this section we prove Theorem 1.1. We first define a linearly coupled model for both CSPΛ(α) and
SGξ. We connect the free energy of the coupled models via the Guerra-Toninelli interpolation as in
several prior works [Pan05, CGPR19, JS20, CLSS22]; our proof is especially inspired by [Pan18].

Definition 3.1 ((A, b)-coupled models). Let A ∈ {0, 1}ℓ×ℓ
′

be a 0-1 matrix and b ∈ Rℓ
′

≥0 a nonnegative
vector satisfying (Ab)i = 1 for all i ∈ [ℓ].

An (A, b)-coupled model of SGξ is a collection of random Hamiltonians G1, . . . ,Gℓ related by
G1
...
Gℓ

 = A


G
′

1
...
G
′

ℓ′

 , (27)

where each G′i′ is the Hamiltonian for an independent instance of SGs→
√

bi′ξ(s)
. The grand Hamiltonian is

G : ({±1}n)ℓ → R defined by G(x) =
∑ℓ

i=1Gi(xi).

An (A, b)-coupled model of CSPΛ(α) is a collection of random HamiltoniansH1, . . . ,Hℓ related by
H1

...
Hℓ

 = A


H
′

1
...
H
′

ℓ′

 , (28)
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where eachH ′i′ is the Hamiltonian for an independent instance of CSPΛ(bi′α). The grand Hamiltonian is
H : ({±1}n)ℓ → R defined byH(x) =

∑ℓ
i=1Hi(xi).

In this section we useG for a grand Hamiltonian of a spin glass andH for that of a CSP. Expectations
are over the randomness of the Hamiltonians.

Notice that A is {0, 1}-valued. One can think of this matrix as choosing which of the ℓ′ independent
“hidden” instances are connected to each of the ℓ “observed” instances. The vector b gives the
variances of the hidden instances, and the scaling is set so that the variance of each observed
instance is the same as a single instance.

Remark 3.2. This model describes any linear correlation structure on ℓ HamiltoniansH1, . . . ,Hℓ, in the
sense that it is equivalent to the following alternative model. For the CSP model, there are 2ℓ parameters
(ηS)S⊆[ℓ] such that ηS specifies the fraction of constraints that are simultaneously shared between all of the
Hamiltonians in S and the remaining constraints are sampled independently.

We study the free energy of our models, restricted to sets of assignments with particular overlap
vectors.

Definition 3.3 (Free energy of states with given overlap). Let S ⊆ R(ℓ) be an open set. Let H :
({±1}n)ℓ → R be a grand Hamiltonian. Define ZH ,S(β) as the partition function of H when the
configuration tuples are restricted to those having overlap vector in S; that is,

ZH ,S(β) =
∑

x∈U(ℓ)
n (S)

eβH(x) . (29)

Define the free energy density ofH as

ϕH ,S(β) =
1
βℓn

log ZH ,S(β) . (30)

Remark 3.4. We ignore the edge case U(ℓ)
n (S) = ∅.

Now we can state our main interpolation.

Theorem 3.5 (Interpolation of random Max-CSPs and spin glasses; generalized version of Theo-
rem 1.1). Choose a positive integer ℓ. Consider any set S ⊆ R(ℓ). Let G andH be grand Hamiltonians for
(A, b)-coupled models of SGξ and CSPΛ(α), respectively, where ξ is related to Λ as in Equation (1). Then:

EϕH ,S(β) = E
f∼Λ

[ f ] +
1
√
α

EϕG,S(β) + O
(
β2

α2

)
+ on (1) . (31)

where the second-to-last term (which may depend on n) satisfies
∣∣∣∣∣O (

β2

α2

)∣∣∣∣∣ ≤ C · β
2

α2 whenever βα ≤ ε0 for

constants C, ε0 > 0 depending on ℓ.

Furthermore, by the concentration arguments in Section 2.5, we may drop the expectations over G,H with
the qualitative change that the last term is random and is on (1) with high probability.
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In order to use the Guerra-Toninelli interpolation, we modify the CSP model so that the number
of constraints is m ∼ Pois(αn) rather than m = αn fixed. Because Pois(αn) concentrates around
its mean as n → ∞, the free energy density is asymptotically the same. The (straightforward)
proof of the following lemma is in Appendix A. Using this lemma contributes the on(1) term to
Equation (31).

Lemma 3.6. Letϕ(Pois)
H ,S andϕ(exact)

H ,S denote the free energy density of a CSPΛ(α) instance with m ∼ Pois(αn)
and m = αn clauses, respectively. Then∣∣∣∣Eϕ(Pois)

H ,S −Eϕ(exact)
H ,S

∣∣∣∣ ≤ 1
√
αn

= on (1) . (32)

3.1 Proof of Theorem 3.5

For notational convenience, we assume in this proof that Λ is supported on a single predicate f .
The general case is handled by converting f̂ (∅) back to E f∼Λ[ f ].

Fix positive integers ℓ, ℓ′. We define an interpolated Hamiltonian

K(t, x) = Hα(1−t)n(x) − (1− t)ℓn f̂ (∅) +

√
t
α
G(x) , (33)

where Hα(1−t)n is the grand Hamiltonian of an (A, b)-coupled model of CSPΛ(α(1− t)). The
parameter t controls the interpolation from the Max-CSP (when t = 0) to the spin glass (when
t = 1).

We let β > 0 be a parameter independent of n. We will later choose β such that 1≪ β≪ α as α→∞.

Fix an open subset S ⊆ R(ℓ). We write the average free energy density ofK , at inverse temperature
β, among states that produce overlap vectors in S:

ϕβ(t) := E
H ,G
ϕK(t,·),S(β) (34)

=
1
ℓn

1
β

E
H ,G

log
∑

x∈Un(S)

exp (βK(t, x)) . (35)

In this proof, we upper-bound the derivative d
dtϕβ(t), and thereby the difference between ϕβ(0)

and ϕβ(1), showing that the free energy densities of G andH are close.

3.1.1 Taking the derivative of ϕβ(t)

Let’s calculate d
dtϕβ(t). First, we generalizeK and ϕβ so the t-dependence ofG andH are controlled

by independent parameters:

K̃(ρ,γ, x) := Hρ(x) −
ρℓ

α
f̂ (∅) +

γ
√
α
G(x) , (36)

ϕ̃β(ρ,γ) :=
1
βℓn

E
H
ρ,G

log
∑

x∈Un(S)

exp
(
βK̃(ρ,γ, x)

)
. (37)
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When ρ = (1− t)αn and γ =
√

t, we recover the original expressions:

K(t, x) = K̃((1− t)αn,
√

t, x) (38)

ϕβ(t) = ϕ̃β((1− t)αn,
√

t) (39)

We then take a derivative using the chain rule:

d
dt
ϕβ(t) =

(
∂
∂ρ
ϕ̃β(ρ,γ)

)
dρ
dt

+

(
∂
∂γ
ϕ̃β(ρ,γ)

)
dγ
dt

(40)

= −αn
(
∂
∂ρ
ϕ̃β(ρ,γ)

)
+

1

2
√

t

(
∂
∂γ
ϕ̃β(ρ,γ)

)
(41)

We also introduce a Gibbs expectation operator to use when computing the partial derivatives.
Given a function p(x), the average of p with respect to the Gibbs distribution of K̃(ρ,γ, x) is

〈
p
〉

x :=

∑
x∈Un(S) p(x) · exp

(
βK̃(ρ,γ, x)

)
∑

x∈Un(S) exp
(
βK̃(ρ,γ, x)

) . (42)

3.1.2 The Poisson derivative

To calculate ∂
∂ρ ϕ̃β(ρ,γ), we introduce ℓ′ new variables ρ1, . . . ,ρℓ′ to parameterize the independent

Poisson instances used to constructHρ. We introduce intermediate functions

K̃(ρ1, . . . ,ρℓ′ ,γ, x) =
∑
i∈[ℓ]

[(
A


H
′ρ1
1
...

H
′ρℓ′
ℓ′


)

i
(xi) −

(
A


ρ1
...
ρℓ′


)

i

f̂ (∅)
α

+
γ
√
α
Gi(xi)

]
, (43)

ϕ̃β(ρ1, . . . ,ρℓ′ ,γ) =
1
βℓn

E
H
′ρ1
1 ,...,H

′ρℓ′
ℓ′

E
G

[
log

∑
x∈U(ℓ)

n (S)

exp
(
βK̃(ρ1, . . . ,ρℓ′ ,γ, x)

) ]
. (44)

When ρi′ = bi′ρ for all i′ ∈ [ℓ′], we recover the original functions K̃ and ϕ̃β. In this case, through
another application of the chain rule,

∂
∂ρ
ϕ̃β(ρ,γ) =

∑
i′∈[ℓ′]

(
∂
∂ρi′
ϕ̃β(ρ1, . . . ,ρℓ′ ,γ)

)
∂ρi′

∂ρ
=

∑
i∈[ℓ′]

bi′
∂
∂ρi′
ϕ̃β(ρ1, . . . ,ρℓ′ ,γ) . (45)

We use the explicit derivative of a Poisson variable:

Fact 3.7 (Derivative of a Poisson variable).

∂
∂λ

E
X∼Pois(λ)

[
f (X)

]
= E

X∼Pois(λ)

[
f (X + 1) − f (X)

]
(46)
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Because of Fact 3.7,

∂
∂ρi′
ϕ̃β(ρ1, . . . ,ρℓ′ ,γ) = ϕ̃β(ρ1, . . . ,ρi′ + 1, . . . ,ρℓ′ ,γ) − ϕ̃β(ρ1, . . . ,ρi′ , . . . ,ρℓ′ ,γ) (47)

=
1
βℓn

E
H
′ρ1
1 ,...,H

′ρℓ′
ℓ′

E
G

log
〈

exp
(
βK̃(ρ1, . . . ,ρi′ + 1, . . . ,ρℓ′ ,γ, x) − βK̃(ρ1, . . . ,ρi′ , . . . ,ρℓ′ ,γ, x)

)〉
x

(48)

=
1
βℓn

E
H
′ρ1
1 ,...,H

′ρℓ′
ℓ′

log
〈

exp
(
β
∑
j∈[ℓ]

A ji′
(
(H
′ρi′+1
i′ −H

′ρi′
i′ )(x j) − f̂ (∅)

))〉
x

. (49)

The difference ofH
′ρi′+1
i′ andH

′ρi′
i′ is a single extra clause (normalized by α), applied to k random

indices of the input with random signs. Let f ∗ be the extra clause. Then

=
1
βℓn

E
f ∗

log
〈
exp

βα∑
j∈[ℓ]

A ji′
(

f ∗(x j) − f̂ (∅)
)
〉

x

. (50)

When βα is small, this term can be Taylor-expanded as log z = log (1− (1− z)) = −
∑

p≥1
(1−z)p

p :

=
−1
βℓn

E
f ∗

∑
p≥1

1
p

(
1−

〈
exp

βα∑
j∈[ℓ]

A ji′
(

f ∗(x j) − f̂ (∅)
)
〉

x

)p

. (51)

We introduce additional “replicas” x(s) of x. Precisely, each x(s) is an i.i.d. copy of x. For any function

w and any set of replicas y0, y1, . . . , we have the identity
〈
w(y0)

〉p =
〈∏

s∈[p] w(ys)
〉
. As a result,

=
−1
βℓn

E
f ∗

〈∑
p≥1

1
p

p∏
s=1

(
1− exp

βα∑
j∈[ℓ]

A ji′
(

f ∗(x(s) j
) − f̂ (∅)

)
)〉

x(1),x(2),...

. (52)

We Taylor-expand this expression in βα . The first line comes from the p = 1 term and the second line
comes from the p = 2 term:

=
−1
βℓn

E
f ∗

〈
−
β

α

∑
j∈[ℓ]

A ji′
(

f ∗(x j) − f̂ (∅)
)
−
β2

2α2

( ∑
j∈[ℓ]

A ji′
(

f ∗(x j) − f̂ (∅)
))2

+
β2

2α2

( ∑
j∈[ℓ]

A ji′
(

f ∗(x j) − f̂ (∅)
))( ∑

j∈[ℓ]

A ji′
(

f ∗(y j) − f̂ (∅)
))
+ O

(
β3

α3

) 〉
x,y

. (53)

Notice that because the clause applies random signs to its input,

E
f ∗

[〈
f ∗(x j)

〉
x j

]
= f̂ (∅) . (54)

As a result, the only terms that remain are

=
−β

2α2ℓn
E
f ∗

〈 ∑
i, j∈[ℓ]

Aii′A ji′
(
− f ∗(xi) f ∗(x j) + f ∗(xi) f ∗(y j)

)〉
x,y

+
1
ℓn

O
(
β2

α3

)
. (55)
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From here, we rewrite the correlation of f ∗ as a function of the noise stability of f . Specifically, let
ua = εa(xi)da and va = εa(y j)da for some uniformly chosen ε ∈R {±1}k and d ∈R [ℓ]k. Then u, v are
marginally uniform points in the hypercube that are R(xi, y j)-correlated.

Write f ∗(σ) = f (ε1σd1 , . . . , εkσdk
). Then〈

f ∗(xi) f ∗(y j)
〉

xi,y j
=

〈
f (u) f (v)

〉
xi,y j

=
〈

StabR(xi,y j)
[ f ]

〉
xi,y j

(56)

where StabR(xi,y j)
[ f ] is defined as in Definition 2.29. Using this, we get

=
−β

2α2ℓn

∑
i, j∈[ℓ]

Aii′A ji′
〈
− StabR(xi,x j)

[ f ] + StabR(xi,y j)
[ f ]

〉
x,y

+
1
ℓn

O
(
β2

α3

)
(57)

=
β

2α2ℓn

∑
i, j∈[ℓ]

Aii′A ji′
〈
ξ(R(xi, x j)) − ξ(R(xi, y j))

〉
x,y

+
1
ℓn

O
(
β2

α3

)
. (58)

We can now write the ρ-derivative of ϕ̃β:

∂
∂ρ
ϕ̃β =

β

2α2ℓn

∑
i′∈[ℓ′]

∑
i, j∈[ℓ]

bi′Aii′A ji′
〈
ξ(R(xi, x j)) − ξ(R(xi, y j))

〉
x,y

+
1
ℓn

O
(
β2

α3

)
(59)

3.1.3 The Gaussian derivative

We compute the derivative of ϕ̃β(ρ,γ) with respect to γ. Since the variance of eachGi is independent
of γ, the derivative pulls into the expectation operator:

∂
∂γ
ϕ̃β(ρ,γ) =

1
βℓn

E
H
ρ,G

∂
∂γ

log
[ ∑

x∈Un(S)

exp
(
βK̃(ρ,γ, x)

) ]
(60)

By the chain rule, the γ-derivative of the partition function is proportional to the Gibbs average of
the γ-derivative of the Hamiltonian K̃ :

=
1
ℓn

E
H
ρ,G

[〈
∂
∂γ

(
K̃(ρ,γ, x)

)〉
x

]
(61)

Notice that the expectation is a correlation between a Gaussian process and a Gibbs measure, so we
can use the following formula:

Lemma 3.8 (Stein’s lemma with Gibbs average [Pan13, Lemma 1.1]). Consider two jointly Gaussian
processes {Y(σ)}σ and {Z(σ)}σ. For any w, let ⟨·⟩σ1,...,σw be the w-product Gibbs measure with respect to the
process {Z(σ)}σ. Then

E
Y,Z

[⟨Y(σ)⟩σ] = E
Z

〈E
Y

[
Y(σ)Z(σ)

]〉
σ

−

〈
E
Y

[
Y(σ)Z(σ′)

]〉
σ,σ′

 . (62)
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Consider the following Gaussian processes:

SHρ,G : (x)→
∂
∂γ

(
K̃(ρ,γ, x)

)
(63)

THρ,G : (x)→ βK̃(ρ,γ, x) (64)

Applying Lemma 3.8 then yields

=
1
ℓn

E
H
′ρ,G

[ 〈
E
H
′ρ,G

[
SHρ,G(x)THρ,G(x)

]〉
x
−

〈
E
H
′ρ,G

[
SHρ,G(x)THρ,G(y)

]〉
x,y

]
. (65)

The derivative only acts on the Gaussian components of the Hamiltonian K̃ :

=
1
√
αℓn

E
H
ρ,G

[〈
E
G

[
G(x)THρ,G(x)

]〉
x
−

〈
E
G

[
G(x)THρ,G(y)

]〉
x,y

]
(66)

=
β
√
αℓn

E
H
ρ,G

[ 〈
E
G

[
G(x)

(
H
ρ(x) −

ρℓ

α
f̂ (∅) +

γ
√
α
G(x)

)]〉
x
−〈

E
G

[
G(x)

(
H
ρ(y) −

ρℓ

α
f̂ (∅) +

γ
√
α
G(y)

)]〉
x,y

]
(67)

The constant terms (proportional to f̂ (∅)) cancel. Furthermore, G is centered and is independent of
H : For each independent instance G′i , E[G′iH

ρ] = 0, and by linearity of expectation, E[GHρ] = 0.
All that remains is

=
βγ

αℓn
E
G

[〈
E
G

[
G(x)G(x)

]〉
x
−

〈
E
G

[
G(x)G(y)

]〉
x,y

]
. (68)

Using the definition of an (A, b)-coupled model, this is

=
βγ

αℓn
E
G

[〈 ∑
i, j∈[ℓ]

∑
i′, j′∈[ℓ′]

Aii′A ji′

√
bi′b j′ E

G

[G′i′(xi)G
′

j′(x j)]

〉
x
−

〈 ∑
i, j∈[ℓ]

∑
i′, j′∈[ℓ′]

Aii′A ji′

√
bi′b j′ E

G

[G′i′(xi)G
′

j′(y j)]

〉
x,y

]
. (69)

By Fact 2.12, we can write the covariance as a function of ξ:

E
G

[G′i′(xi)G
′

j′(y j)] =

nξ(R(xi, y j)) i′ = j′

0 otherwise
(70)

Thus, we have

=
βγ

αℓ
E
G

[〈 ∑
i, j∈[ℓ]

∑
i′∈[ℓ′]

Aii′A ji′bi′
(
ξ(R(xi, x j)) − ξ(R(xi, y j))

)〉
x,y

]
. (71)
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3.1.4 Putting it all together

Now we can calculate the total derivative of ϕβ(t):

d
dt
ϕβ(t) = −αn

(
∂
∂ρ
ϕ̃β(ρ,γ)

)
+

1

2
√

t

(
∂
∂γ
ϕ̃β(ρ,γ)

)
(72)

=
( −β
2αℓ

+
βγ

2αℓ
√

t

) ∑
i′∈[ℓ′]

∑
i, j∈[ℓ]

bi′Aii′A ji′
〈
ξ(R(xi, x j)) − ξ(R(xi, y j))

〉
x,y
−

1
ℓ

O
(
β2

α2

)
(73)

= O
(
β2

α2

)
, (74)

since γ =
√

t and ℓ is a constant. So∣∣∣ϕβ(1) −ϕβ(0)∣∣∣ ≤ max
t∈[0,1]

d
dt
ϕβ(t) = O

(
β2

α2

)
. (75)

This proves Theorem 3.5.

4 Optimal value of a random Max-CSP
As a corollary of Theorem 3.5, we prove that in the large α limit, the optimal value of a coupled
Max-CSP among solutions with given overlap structure is determined by that of a spin glass.

Corollary 4.1. The following holds for all ℓ, ℓ′ and (A, b)-coupled models G of SGξ andH of CSPΛ(α),
and all open sets S ⊆ R(ℓ),

E max
x∈U(ℓ)

n (S)

1
ℓn
H(x) = E

f∼Λ
[ f ] + E max

x∈U(ℓ)
n (S)

1
√
α

1
ℓn
G(x) + O(α−2/3) + on(1) . (76)

where the second-to-last term (which may depend on n) satisfies
∣∣∣∣O (
α−2/3

)∣∣∣∣ ≤ C · α−2/3 for all α ≥ C for a
constant C depending on ℓ.

Furthermore, by the concentration arguments in Section 2.5, we may drop the expectations over G,H with
the qualitative change that the last term is random and is on (1) with high probability.

Proof. Using Theorem 3.5, we have

EϕH ,S(β) = E
f∼Λ

[ f ] +
1
√
α

EϕG,S(β) + O
(
β2

α2

)
+ on(1) . (77)

Recall that there are at most 2ℓn choices of x. Applying Fact 2.22 for G and forH , we get∣∣∣∣∣∣ϕG,S(β) − max
x∈Un(S)

1
ℓn
G(x)

∣∣∣∣∣∣ ≤ log |Un(S)|
βℓn

= O
(

1
β

)
, (78)∣∣∣∣∣∣ϕH ,S(β) − max

x∈Un(S)

1
ℓn
H(x)

∣∣∣∣∣∣ = O
(

1
β

)
. (79)

By Jensen’s inequality, the same holds when using expectations. Plugging in these bounds and
choosing β = α2/3 proves the claim. □

In the special case ℓ = ℓ′ = 1, (A, b) = (I, (1)), and S = R(ℓ) = [−1, 1], we conclude Corollary 1.2.
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4.1 Numerical calculations

We compute the value of the Parisi formula for the spin glasses associated with popular CSPs in
Table 1. This code can be run for any choice of spin glass and is available online6. Our code uses
the zero-temperature representation of the Parisi functional from [AC17], which we restate below:

Definition 4.2 (Parisi functional at zero temperature [Par80, AC17]). Given a function ζ in

U =

{
ζ : [0, 1)→ R≥0 : ζ is right-continuous, non-decreasing,

∫ 1

0
ζ(t)dt < ∞

}
, (80)

the Parisi functional Pξ∞(ζ) is

P
ξ
∞(ζ) = Φζ(0, 0) −

1
2

∫ 1

0
sξ′′(s)ζ(s)ds , (81)

where the function Φζ(x; t) : R× [0, 1]→ R is the solution of the Hamilton-Jacobi-Bellman equation

∂tΦζ(x; t) +
ξ′′(t)

2

(
∂xxΦζ(x; t) + ζ(t) (∂xΦζ(x; t))2

)
= 0 , (82)

with initial condition Φζ(x; 1) = |x|.

As stated in the introduction, the optimum value of a spin glass is infζ∈U P
ξ
∞(ζ). The value ALG

achievable by efficient algorithms is given by infζ∈LP
ξ
∞(ζ) for an extended class of functionsL ⊇ U

defined below. See [HS21, Section 6.1] and references therein for well-posedness considerations.

Definition 4.3 (ALG). Let ALG = infζ∈LP
ξ
∞(ζ), where the class of functions L is defined by

L =

 ζ : [0, 1)→ R≥0 : ζ is right-continuous,

∥ξ” · ζ∥TV[0,t] < ∞ for all t ∈ [0, 1),
∫ 1

0 ξ”(t)ζ(t)dt < ∞

 (83)

where the total variation
∥∥∥ f

∥∥∥
TV(J) on an interval J is

∥∥∥ f
∥∥∥

TV(J) = sup
n∈N

sup
t0<···<tn,ti∈J

n∑
i=1

∣∣∣ f (ti) − f (ti−1)
∣∣∣ . (84)

Theorem 4.4 ([CGPR19, Lemma 5.4]). For even mixture polynomials ξ such that c2 = 0, ALG <
GSED(SGξ) holds with strict inequality.

5 Overlap gaps in a random Max-CSP
Theorem 3.5 implies that many quantities are equivalent for CSPΛ(α) at large α and its associated
spin glass model. For example:

1. Free energy of a single instance (proving Theorem 1.1).
(ℓ = 1, ℓ′ = 1, A = [[1]], b = [1], S = R)

6https://github.com/marwahaha/csp-parisi/
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k Max 1-in-k SAT Max k NAESAT Max k SAT Max k XOR
2 1

2 +
0.54
√
α

1
2 +

0.54
√
α

3
4 +

0.40
√
α

1
2 +

0.54
√
α

3 3
8 +

0.54
√
α

3
4 +

0.47
√
α

7
8 +

0.33
√
α

1
2 +

0.58
√
α

4 1
4 +

0.48
√
α

7
8 +

0.37
√
α

15
16 +

0.26
√
α

1
2 +

0.58
√
α

5 5
32 +

0.41
√
α

15
16 +

0.28
√
α

31
32 +

0.20
√
α

1
2 +

0.59
√
α

Table 1: Optimal value of a random k-CSP with n variables and αn clauses, as n → ∞. The calculation uses the
zero-temperature Parisi functional in Definition 4.2. All values are rounded to two decimal places. The values for
kXOR match those in [MH22]. We expect the values to be accurate to two significant figures, based on consistency with
independently calculated values for 2XOR and 3XOR [AMS21b].

2. Free energy of a single instance, restricting the Hamming weight to W ⊆ [−1, 1] (related to
[JS20]).
(ℓ = 1, ℓ′ = 1, A = [[1]], b = [1], S = {r ∈ R : r{1} ∈W})

3. Existence (or non-existence) of an overlap gap property in the overlap range (s, t).
(ℓ = 2, ℓ′ = 1, A = [[1], [1]], b = [1], S = {r ∈ R : s < r{1,2} < t})

4. Existence (or non-existence) of an overlap gap property in the overlap range (s, t) for η-coupled
Hamiltonians [CGPR19].
(ℓ = 2, ℓ′ = 3, A = [[1, 1, 0], [1, 0, 1]], b = [η, 1− η, 1− η], S = {r ∈ R : s < r{1,2} < t})

5. Existence (or non-existence) of the branching overlap gap property in [HS21].
(Choice of parameters in Section 5.1)

We use Theorem 3.5 to show how CSPΛ(α) inherits the overlap gap property from a spin glass.
This proof is a generalization of [CGPR19, Proof of Theorem 5] and [CLSS22, Lemma 8.14] to hold
for arbitrary (A, b)-coupled instances. We use the same argument to transfer the branching OGP of
[HS21], a hierarchical style of OGP described by a rooted tree.

Definition 5.1 (OGP [Gam21]). A Hamiltonian H : {±1}n → R exhibits the overlap gap property (OGP)
at value v if there are −1 ≤ s < t ≤ 1 such that for all σ1, σ2 with H(σ1) ≥ v, H(σ2) ≥ v, we have

R(σ1, σ2) < (s, t) . (85)

Definition 5.2 (Average-OGP, nonstandard definition). A Hamiltonian H exhibits the average-OGP at
value v if the same holds whenever 1

2 (H(σ1) + H(σ2)) ≥ v.

Remark 5.3. The average-OGP implies the OGP. On the other hand, the OGP implies the average-OGP
with a weakened (larger) value. The interpolation in this work transfers the average-OGP.

Proposition 5.4. If SGξ exhibits the average-OGP at value v with high probability, then for all ε > 0, for
all sufficiently large α, CSPΛ(α) exhibits the average-OGP at value E f∼Λ[ f ] + v+ε

√
α

with high probability,
when ξ is related to Λ as in Equation (1).

Proof. Let ℓ = 2, and let S = (a, b) be the overlap gap for the spin glass model SGξ. Using
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Corollary 4.1, for sufficiently large α, we have w.h.p

max
x∈U(ℓ)

n (S)

1
ℓn
H(x) ≤ E

f∼Λ
[ f ] +

max
x∈U(ℓ)

n (S)
1
ℓnG(x) + ε

√
α

+ on(1) . (86)

The overlap gap property implies that w.h.p

max
x∈U(ℓ)

n (S)

1
ℓn
G(x) ≤ v . (87)

Hence with high probability we also have

max
x∈U(ℓ)

n (S)

1
ℓn
H(x) ≤ E

f∼Λ
[ f ] +

v + 2ε
√
α

. (88)

□

Analogously, we can transfer a generic version of the OGP on (A, b)-coupled models.

Definition 5.5 (Generic OGP). For a relatively open subset S ⊆ R(ℓ), random Hamiltonians H1, . . . , Hℓ :
{±1}n → R exhibit an S-OGP at value v if

max
(σ1,...,σℓ)∈U(ℓ)

n (S)

1
ℓn

(H1(σ1) + · · ·+ Hℓ(σℓ)) ≤ v . (89)

The size of the OGP is ℓ.

Proposition 5.6. If an (A, b)-coupled model of SGξ exhibits an S-OGP at value v with high probability,
then for all ε > 0, for all sufficiently large α, the (A, b)-coupled model of CSPΛ(α) exhibits an S-OGP at
value E f∼Λ[ f ] + v+ε

√
α

with high probability, when ξ is related to Λ as in Equation (1).

5.1 The branching OGP

The branching OGP gives bounds tight algorithmic bounds for a class of spin glass models,
matching the performance of certain approximate message passing algorithms [HS21]. We present
the somewhat involved definition and show that it is captured by our framework.

Definition 5.7 (Tree-coupled ensemble). A tree-coupled ensemble of Hamiltonians is defined by:

1. A rooted tree of height D defined by the vector k⃗ ∈ ZD
+, so that every node at depth d has kd+1 children.

We describe the nodes of the tree as T(⃗k) and the leaves of the tree as L(⃗k).

2. A coupling vector p⃗ ∈ ZD+1
+ , so that

0 = p0 ≤ p1 ≤ · · · ≤ pD = 1 . (90)

Given these parameters, we generate a family of Hamiltonians (H(u))u∈L(⃗k) as follows. Generate independent

instances of the Hamiltonian H̃(v) for every non-root v ∈ T(⃗k), and scale7 each by a factor of pd − pd−1 where

7For the spin glass, scale the variance of each Gaussian by pd − pd−1; for the CSP, scale the number of clauses by
pd − pd−1.
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d is the depth of v in the tree. Use these to construct the Hamiltonians H(u) for each u ∈ L(⃗k) defined by

H(u) =
D−1∑
d=0

H̃(a(u,d)) , (91)

where a(u, d) is the dth ancestor of u. The size of the ensemble is
∣∣∣∣L(⃗k)

∣∣∣∣ = ∏D
i=1 k⃗i.

Definition 5.8 (Branching OGP). A tree-coupled ensemble of Hamiltonians exhibits a branching OGP
with gap η at value v if:

• there is q⃗ ∈ ZD+1
+ with 0 ≤ q0 < q1 < · · · < qD = 1,

• define Q ∈ RL(⃗k)×L(⃗k) by Qu,v = qlca(u,v), where lca(u, v) is the depth of the least common ancestor of
u and v,

• define

Q(η) =
{
σ⃗ ∈ ({±1}n)L(⃗k) : ∀u, v ∈ L(⃗k).

∣∣∣R(σ(u), σ(v)) −Qu,v
∣∣∣ ≤ η}

• it holds that for all (σ(u))u∈L(⃗k) ∈ Q(η), the average value over u ∈ L(⃗k) of H(u)(σ(u)) is at most v.

The size of the OGP is
∣∣∣∣L(⃗k)

∣∣∣∣ = ∏D
i=1 k⃗i.

Remark 5.9. Our definition is slightly simplified from [HS21]. We always fix (using their notation) m = 0,
because as we show below in Appendix C, it suffices to obstruct algorithms which have mean zero.

A tree-coupled ensemble is an instance of an (A, b)-coupled model, Definition 3.1, using the
following choice of parameters:

• ℓ = |L(⃗k)|.

• ℓ′ = |T(⃗k)|.

• Au,v = 1 if u = v, or v ∈ T(⃗k) is a non-root ancestor of u ∈ L(⃗k); otherwise Au,v = 0.

• bv = pd − pd−1 for every v ∈ T(⃗k) at the dth level of the tree.

The presence of the branching OGP is determined by the set

S = {r ∈ R : ∀u, v ∈ L(⃗k) .
∣∣∣r{u,v} −Qu,v

∣∣∣ < η} . (92)

Therefore, by Proposition 5.6, the branching OGP transfers from the spin glass to the CSP.

6 Implications for algorithmic hardness
We prove that the OGP has consequences for the performance of many Max-CSP algorithms,
specifically those which are overlap-concentrated. This section follows [HS21, Section 3] which proves
a similar result for spin glasses, with the changes that (1) an instance of (the Poisson version of) the
CSP model consists of i.i.d Poisson random variables whereas a spin glass consists of i.i.d Gaussian
random variables; (2) we debias the algorithms first to simplify the proof. We do not enforce any
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time or space constraints on algorithms and the proofs apply equally well to arbitrary functions
satisfying the assumptions.

Definition 6.1 (t-correlated instances). For t ∈ [0, 1], a t-correlated pair of instances I1
t and I2

t of the
model CSPΛ(α) is created by:

1. Generate Pois(αtn) random clauses of the CSP. Let I1
t and I2

t both be initially equal to this instance.

2. Independently generate two additional sets of Pois((1− t)αn) clauses. Add the first set of clauses to
I

1
t and the second set to I2

t .

Equivalently, we let I1
t be an instance with Pois(αn) clauses, then independently with probability 1 − t

for each possible clause and sign pattern, we re-sample the multiplicity Pois
(
α

2knk−1

)
of the clause and sign

pattern to generate I2
t .

Equivalently, sample I1
t ,I2

t from the (A, b)-coupled model with A = [[1, 1, 0], [1, 0, 1]], b = [t, 1− t, 1− t].

Definition 6.2 (Overlap-concentrated algorithm, [HS21, Definition 2.1]). A deterministic algorithmA
is overlap-concentrated if for every t ∈ [0, 1] and constant δ > 0, the event∣∣∣R(A(H1

t ),A(H2
t )) −E R(A(H1

t ),A(H2
t ))

∣∣∣ ≤ δ (93)

occurs w.h.p, where H1
t , H2

t are t-correlated instances.

Our results also apply to randomized algorithms which are overlap-concentrated w.h.p over the
random seed. For the remainder of the section, we assume the algorithm is deterministic.

By a debiasing procedure, we may assume without loss of generality that an overlap-concentrated
algorithmA satisfies E[A(H)] = 0. See Appendix C for details.

Fix an algorithmA. For t ∈ [0, 1], let H1
t and H2

t be a t-correlated pair of Hamiltonians for CSPΛ(α).
We define the correlation function χ : [0, 1]→ R forA by

χ(t) = E

[
R(A(H1

t ),A(H2
t ))

]
. (94)

The correlation function χ satisfies the following properties.

Proposition 6.3. For any algorithm A run on an instance I of CSPΛ(α) such that E[A(I)] = 0,
χ : [0, 1]→ [0, 1] satisfies

1. χ is continuous,

2. χ(t) is strictly increasing,

3. χ(0) = 0,χ(1) = 1

4. for all t ∈ [0, 1], χ(t) ≤ t.

Proof sketch. As we show in Appendix B, the correlation functionχ(p) is equal to the noise stability of
A viewed as a function of independent Poisson random variables, from which the listed properties
easily follow. See the appendix for the full proof. □
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Definition 6.4 (Correlation function, [HS21, Proposition 3.1]). A function χ : [0, 1] → [0, 1] that
satisfies the properties of Proposition 6.3 is called a correlation function.

Definition 6.5 (η-forbid an algorithm). An OGP with gap (s, t) η-forbids an algorithmA if E R(A(H1
r ),A(H2

r ))

is in the η-interior of the interval (s, t) for H1
r and H2

r a pair of r-correlated instances for some r ∈ [0, 1]. In
other words, the open ball with radius η around the point is contained in (s, t).

More generally, an S-OGP η-forbids an algorithmA if E Q(A(H1), . . . ,A(Hℓ)) is in the η-interior of S.

Definition 6.6 (η-forbid a correlation function). An S-OGP η-forbids a correlation function χ if

S ⊆ [−1, 1](
ℓ
2) only depends on pairwise overlaps, and (χ(ρi, j))i, j is in the η-interior of S where ρi, j =

E Hi(σ)H j(σ) is the correlation of Hamiltonians Hi and H j (for any fixed arbitrary σ).

Observe that if an OGP forbids the correlation function of an algorithm, then it also forbids the
algorithm.

Theorem 6.7 (Existence of even spin glass OGP, [HS21, Proposition 3.2]). For all even functions ξ and
v > ALG, there is η > 0 and an integer ℓ such that for all correlation functions χ there is a coupled model for
SGξ on at most ℓ Hamiltonians and a set S η-forbidding χ such that with high probability the coupled model
exhibits an S-OGP at value v. Specifically, the coupled model is a tree-coupled ensemble and the OGP is a
branching OGP.

We now show that the presence of a branching OGP on a random Max-CSP upper-bounds the
performance of any overlap-concentrated algorithm.

Theorem 6.8 (Formal version of Theorem 1.4). Suppose that CSPΛ(α) exhibits a size-ℓ branching OGP
at value v for a constant ℓ. Suppose that an overlap-concentrated algorithmA is η-forbidden by the OGP for
a constant η > 0. Then w.h.p the output ofA has value at most v.

Proof. Let p be the probability thatA outputs a solution of value at least v when run on a single
instance of CSPΛ(α), so that we want to prove p ≤ on(1). Fix the correlation structure of the
Hamiltonians for which the branching OGP holds, and let H(u) be the correlated Hamiltonians.
Consider running algorithmA on each of the instances H(u). Let E be the event that the average
value of the output solutions is at least v. On the one hand, by [HS21, Proof of Proposition 3.6(a)],

Pr[E] ≥ pℓ . (95)

On the other hand, E is unlikely, because the expected output ofA lies in the forbidden region of
the OGP, and if the output ofA lies in the forbidden region, then by definition E does not hold.
Specifically,

Pr[E] ≤ Pr
[
A(H(u)) outside of forbidden region

]
. (96)

The right-hand side can be union-bounded across the (ℓ2) pairwise overlaps describing the forbidden
region. In order to lie outside the region, the deviation from the expectation must be at least η in one
of the coordinates. By overlap concentration, the deviation probability is at most (ℓ2) · on(1) = on(1).
Combining this with Equation (95) and taking the ℓth root yields the claim. □
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Remark 6.9. Note that [HS21] obstruct a broader class of algorithms that can output solutions in the convex
hull of the solution space; since we restrict to algorithms that output valid values, we do not use the technical
considerations of [HS21, Section 3.3].

Combining Theorem 6.7, Proposition 5.6, Theorem 6.8, we conclude the following:

Corollary 6.10. Let I be an instance of CSPΛ(α) such that every predicate f in the support of Λ is even.
For all ε > 0 there is α0 > 0 such that for all α ≥ α0 and all overlap-concentrated algorithms, w.h.p it holds
that

1
n

Hα(A(I)) ≤ E
f∼Λ

[ f ] +
ALG + ε
√
α

. (97)

where ALG is defined in Definition 4.3 for ξ related to Λ as in Equation (1).

Using Theorem 4.4, which states that ALG is strictly less than the ground state energy for even spin
glasses with no degree-2 part,

Corollary 6.11 (Formal version of Corollary 1.5). Let I be an instance of CSPΛ(α) such that for every
predicate f in the support of Λ, the only nonzero Fourier coefficients of f have even degree j ≥ 4. There are
constants ε > 0,α0 > 0 such that for all α ≥ α0 and all overlap-concentrated algorithmsA, w.h.p it holds
that

1
n

Hα(A(I)) ≤ vI −
ε
√
α

. (98)

In particular, for α = α0, the value is bounded away from vI by a constant factor.

Remark 6.12. As in Remark 2.31, assuming:

1. the OGP holds with probability at least 1− exp(−C1 · n), which is shown by [HS21] in their proof of
Theorem 6.7

2. A is overlap-concentrated with probability at least 1− exp(−C2 · n) for C2 = C2(δ)

then the conclusions of Theorem 6.8, Corollary 6.10, Corollary 6.11 hold with probability at least 1 −
exp(−C · n), where C depends on C1, C2.

7 Discussion
We establish a formal average-case link between spin glasses and Max-CSPs of certain minimum
clause densities. This link shows an equivalence of optimal value, overlap gaps, and hardness for a
large class of algorithms. Curiously, every Max-CSP with the same noise stability polynomial is
linked to the same spin glass.

As part of this work, we extend the list of Max-CSPs known to have an OGP. It is an open question
to completely classify which spin glasses (and thus which Max-CSPs) have an OGP. In the spherical
spin glass setting [Sub18, Proposition 1], the weight of the quadratic terms exactly determine the
presence of an OGP; the same may be true on the hypercube. There is a technical hurdle to proving
the existence of OGPs on spin glasses when the mixture polynomial is not even. For example, the
associated spin glass to Max-3XOR is not proven to have an OGP, although it is expected to have
one [AMS21b].

It is also possible that the onset of the branching OGP of [HS21] marks the hardness threshold for all
efficient algorithms for spin glasses and Max-CSPs, and not just overlap-concentrated algorithms.
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Furthermore, it is possible that a single algorithm (namely, suitably-applied message-passing) is
the optimal algorithm. This is remarkably similar to the situation for worst-case analysis vis-à-vis
the Unique Games Conjecture (UGC) [Kho02]. The UGC implies that the standard SDP is the
optimal approximation algorithm for any CSP [Rag08]. It is interesting to investigate whether
other algorithms, such as Sum-of-Squares algorithms, can be designed in a way that has equivalent
performance to approximate message-passing, although there are existing certification lower
bounds for a variety of models [BGL17, GJJ+20]. Our curiosity is heightened by the observation
that the Parisi formula, and algorithms for spin glasses (and hence average-case CSPs), only use
the “degree-2” part of the overlap distribution on R(ℓ), analogous to how the basic SDP is also a
“degree-2” algorithm.

How general is overlap concentration? [HS21] show that Langevin dynamics and certain families of
approximate message-passing algorithms are overlap-concentrated on spin glasses, and therefore
obstructed in the presence of a branching OGP to a constant given by the extended Parisi formula.
Algorithms representable as low-degree polynomials are known to be stable on spin glasses, and
obstructed for some spin glasses [GJW20] and CSPs [BH22]. However, it remains a technical
challenge to show that low-degree polynomials are overlap-concentrated:

Conjecture 7.1 (Low-degree polynomials are overlap-concentrated on CSPs and spin glasses). Any
low-degree polynomial algorithm that solves a typical instance of CSPΛ(α) or SGξ as defined in [GJW20,
Definition 2.3] is overlap-concentrated.

There may be other forms of equivalence between spin glasses and Max-CSPs. We conjecture that
the two models have the same distribution of overlap vectors:

Conjecture 7.2 (Equivalence of distribution of overlap vector, informal). Take any Max-CSP and
consider the associated spin glass SGξ, where ξ is defined as in Equation (1). For any coupled ensemble of
the models, the distribution of Q(σ1, . . . , σℓ) for random near-optimal solutions converges in some sense as
n → ∞. Furthermore, for α → ∞ the distribution for the CSP converges to the distribution for the spin
glass.

It is also likely that algorithms beyond the QAOA have identical average-case performance on a
random instance of Max-CSP and that of the corresponding spin glass. In fact, we suspect that
every Max-CSP has an optimal algorithm related to message-passing that obeys this equivalence.

Spin glasses may also be related to more classes of CSPs, such as those with non-Boolean inputs
and those without random literal signs. Also of interest is the problem of refuting the CSP when it
is unsatisfiable, which typically requires α superconstant. It is not known how to use statistical
physics methods to study refutation [AOW15, HMX21]. Another open problem (related to studying
CSPs at small constraint density α) is to determine the optimal average-case value to higher-order
terms in α.
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Appendix

A Concentration Proofs
In this section, we furnish the proofs of concentration inequalities that we use. We start with

Corollary 2.33. The exponent in this corollary can be improved to exp
(
−

x2
2a

)
, which is the statement

of the Borell-TIS inequality, but we utilize this argument since it analogously proves Corollary 2.35.

Corollary 2.33. Let {H(σ)}σ∈{±1}n be a Gaussian process such that E H(σ)2
≤ s2 for all σ ∈ {±1}n. Then

for all x ≥ 0,

Pr
[∣∣∣∣∣ max
σ∈{±1}n

H(σ) −E max
σ∈{±1}n

H(σ)

∣∣∣∣∣ ≥ x
]
≤ 2 exp

(
−x2

4s2

)
. (24)

Proof. Take f (σ) = 1 in Lemma 2.32 to obtain the free energy X = ZH(β). By the lemma, we have

Pr
[∣∣∣∣∣1βZH(β) −E

1
β

ZH(β)

∣∣∣∣∣ ≥ x
]
≤ 2 exp

(
−x2

4s2

)
. (99)

On the other hand, by Fact 2.22, limβ→∞ 1
βZH(β)

a.s.
= maxσ∈{±1}n H(σ), and since the right-hand side

concentration is uniform in β, we may take the limit β → ∞ on the left-hand side to conclude
the claim. Formally, a.s. convergence implies limβ→∞E 1

βZH(β) = E maxσ∈{±1}n H(σ). Slutsky’s
theorem then implies

1
β

ZH(β) −E
1
β

ZH(β)
a.s.
→ max
σ∈{±1}n

H(σ) −E max
σ∈{±1}n

H(σ) . (100)

This implies that the probability of lying in the test region (−∞,−x]∪ [x,∞) is the same between
the right side and the limit of the left-hand side. □

We will now prove Lemma 2.34. This proof applies to the Poisson model. The same proof works for
the exact model, because McDiarmid’s inequality is proven with a martingale argument, which still
holds for non-independent random variables. We will use the following variant of McDiarmid’s
inequality, which applies to a Lipschitz function of i.i.d random variables which are highly biased.

Lemma A.1 ([CLSS22, Lemma 7.6 (arXiv version)]). Suppose that X1, . . .XN are sampled i.i.d from a
distribution D over a finite set X such that D assigns probability 1− p to a particular outcome x0 ∈ X. Let
F : XN

→ R satisfy a bounded-differences inequality, so that∣∣∣F(x1, . . . , xi−1, xi, xi+1, . . . , xN) − F(x1, . . . , xi−1, x′i , xi+1, . . . , xN)
∣∣∣ ≤ c (101)

for all x1, . . . , xn, x′i ∈ X. Then

Pr
[∣∣∣F(X1, . . . , XN) −E F(X1, . . . , XN)

∣∣∣ ≥ ε] ≤ 2 exp
(

−ε2

2Np(2− p)c2 + 2cε/3

)
. (102)

We deduce the following corollary for Poisson random variables.
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Corollary A.2. Suppose that X1, . . . , XN are sampled i.i.d from Pois(p). Let F(X1, . . . , XN) satisfy the
bounded-differences inequality, so that∣∣∣F(x1, . . . , xi−1, xi, xi+1, . . . , xN) − F(x1, . . . , xi−1, xi + 1, xi+1, . . . , xN)

∣∣∣ ≤ c (103)

for all x1, . . . , xn ∈N. Then

Pr
[∣∣∣F(X1, . . . , XN) −E F(X1, . . . , XN)

∣∣∣ ≥ ε] ≤ 2 exp
(

−ε2

2Np(2− p)c2 + 2cε/3

)
. (104)

Proof. Fix m ∈N. We approximate Pois(p) ≈ Bin(m, p/m), apply the lemma to the corresponding
(finitely many, 0/1-supported) Bernoulli random variables, then take the limit m→∞.

Formally, let (Xi, j)i∈[N], j∈[m] be i.i.d Ber(p/m), and let

F′(Xi, j) := F(
m∑

j=1

X1, j, . . . ,
m∑

j=1

XN, j) . (105)

Applying the version of McDiarmid’s inequality to F′, we conclude

Pr
[∣∣∣F′(Xi, j) −E F′(Xi, j)

∣∣∣ ≥ ε] ≤ 2 exp
(

−ε2

2Np(2− p)c2 + 2cε/3

)
. (106)

Notice that the right-hand side is independent of m. Taking the limit m → ∞ independent of
all the other parameters, the left-hand side converges to Pr

[∣∣∣F(X1, . . . , XN) −E F(X1, . . . , XN)
∣∣∣ ≥ ε]

as desired. This is justified as follows. We have Bin(m, p/m)
d
→ Pois(p) as m → ∞. Writing

F′(Xi, j) = F(X′1, . . . , X′N) where X′i ∼ Bin(m, p/m), by the continuous mapping theorem (F is
continuous since the domain is discrete) and Slutsky’s theorem,

F(X′1, . . . , X′N) −E F(X′1, . . . , X′N)
d
→ F(X1, . . . , XN) −E F(X1, . . . , XN) .

Hence we may conclude that the probability of lying in the test region (−∞,−ε]∪ [ε,∞) is the same
between the right side and the limit of the left-hand side. □

Lemma 2.34 (Concentration under CSP Gibbs distribution). Let β > 0 and f : {±1}n → R≥0 be
arbitrary. Let {H(σ)}σ∈{±1}n be a sample from CSPΛ(α). Let X = log

∑
σ∈{±1}n exp(βH(σ)) f (σ). Then for

all x ≥ 0,

Pr
[∣∣∣X −E X

∣∣∣ ≥ x
]
≤ 2 exp

 −x2α

4(n + x
β )β

2

 . (25)

Proof. We consider the nk random variables Xe equal to the multiplicity of each edge e ∈ [n]k and
the function F = 1

βX. The Xe are i.i.d as Pois(α/nk−1). If a single edge is added, then since H(σ)
changes by at most

max f∈supp(Λ),x∈{±1}k
∣∣∣ f (x)∣∣∣

α
≤

1
α

, (107)

we also have that F changes by only at most 1
α .
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Therefore we may apply Corollary A.2 with constant c = 1
α , p = α

nk−1 , and ε = x
β . The denominator

in the right-hand side exponent of Equation (104) is

−ε2

2Np(2− p)c2 + 2cε/3
(108)

=
−x2(

2n
α (2−

α
nk−1 ) +

2x
3αβ

)
β2

(109)

=
−x2α(

2n(2− α
nk−1 ) +

2x
3β

)
β2

(110)

≤
−x2α

4
(
n + x

β

)
β2

. (111)

This completes the proof. □

Lemma 3.6. Letϕ(Pois)
H ,S andϕ(exact)

H ,S denote the free energy density of a CSPΛ(α) instance with m ∼ Pois(αn)
and m = αn clauses, respectively. Then∣∣∣∣Eϕ(Pois)

H ,S −Eϕ(exact)
H ,S

∣∣∣∣ ≤ 1
√
αn

= on (1) . (32)

Proof. Let m be the number of edges in the Poisson model and αn in the exact model. Couple the
two models so that the first αn edges of the Poisson model equal the exact model. Comparing the
Hamiltonians of the two instances, we find

1
α

∑
e∈E

(
I(exact)

) fe(σe) −
1
α
· |m− αn| ≤

1
α

∑
e∈E

(
I(Pois)

) fe(σe) ≤
1
α

∑
e∈E

(
I(exact)

) fe(σe) +
1
α
· |m− αn| , (112)

where we have used that | f (x)| ≤ 1. This gives a corresponding bound on the difference in free
energy density: ∣∣∣∣ϕ(Pois)

H ,S −ϕ(exact)
H ,S

∣∣∣∣ ≤ |m− αn|
αn

. (113)

Taking the expectation,∣∣∣∣Eϕ(Pois)
H ,S −Eϕ(exact)

H ,S

∣∣∣∣ ≤ E
∣∣∣∣ϕ(Pois)
H ,S −ϕ(exact)

H ,S

∣∣∣∣ (Jensen’s inequality) (114)

≤
Em∼Pois(αn) |m− αn|

αn
(Equation (113)) (115)

≤

(
Em∼Pois(αn)(m− αn)2

)1/2

αn
(Jensen’s inequality) (116)

=

√
αn
αn

=
1
√
αn

. (117)

□
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B Correlation functions of sparse Hamiltonians
In this section, we prove Proposition 6.3. The proof uses Fourier analysis ofA in the same way
as [HS21, Proof of Proposition 3.1]. We must use the more general Efron-Stein basis and a mild
generalization of the noise operator defined in Definition 2.27.

Definition B.1 (Efron-Stein decomposition). For a function f ∈ L2(Ωm,π⊗m), we define f⊆S(x) =

Ex
S
[ f (x) | xS], where the expectation means that the variables xi for i ∈ S are independently resampled from

π, and f=S(x) =
∑

J⊆S(−1)|S|−|J| f⊆J(x).

A core property of this decomposition, as stated in [KLLM21, Section II.2.2], is that f=S depends only on
xi for i ∈ S, and furthermore

〈
f=S, 1

〉
= 0 for any 1 that does not depend on all xi for i ∈ S. Additionally,

by [O’D14, Theorem 8.35 and Proposition 8.36],

f =
∑

S⊆[m]

f=S =
∑

S⊆[m]

( ∑
α∈Nm

|Ω|, supp(α)=S

f̂ (α)ϕα

)
, (118)

where Nm
|Ω| = {0, . . . , |Ω| − 1}m and,

ϕα =
m∏

j=1

ϕαi , (119)

with ϕ0 = Id.

Using this decomposition, anyA : Ωm
→ [−1, 1]n under the input measure π⊗m can be written as

A = ( f1, . . . , fn) , (120)

where each fi can be described as in Definition B.1.

We now define the noise operator on a domain Ωm with an arbitrary product measure π⊗m:

Definition B.2 (Noise operator, [KLLM21, Zha21]). Given a probability space (Ω,π) and a noise
parameter ρ ∈ [0, 1], define the noise operator Tρ, which acts on a function f ∈ L2(Ωm,π⊗m) as

Tρ[ f ](σ1, . . . , σm) = E
τ∼Nρ(σ)

[
f (τ1, . . . , τm)

]
, (121)

where the distribution Nρ(σ) chooses each coordinate τi independently asτi = σi with probability ρ ,

τi ∼ π with probability 1− ρ .
(122)

Proof of Proposition 6.3. Define the Fourier weight on a level j as

W j =
1
n

n∑
i=1

∑
S⊆[m],|S|= j

∥∥∥A=S
i

∥∥∥2
. (123)
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Then, when x, y are generated as in Definition 6.1 with t = p,

χ(p) = E [R(A(x),A(y))] =
1
n

E[⟨A(x),A(y)⟩] =
1
n

E
[〈
A(x), Tp[A](x)

〉]
=

1
n

E
[〈

T√p[A](x), T√p[A](x)
〉]

=
1
n

n∑
i=1

∑
S⊆[m]

p|S|
∥∥∥ f=S

i

∥∥∥2
=

∑
j≥0

p|S|W j . (124)

This follows for two reasons. First, the noise operator acts on a p ·m-sized random subset of [m],
equivalent to the (average) number of shared clauses generated by Definition 6.1. Second, the noise
operator satisfies the semi-group property of Tp = T√p ◦ T√p.

The desired properties forχ(p) now follow straightforwardly. χ(p) is continuous as it is a polynomial
in p. It is strictly increasing as the coefficients are nonnegative and not all zero. χ(0) = 0 and
χ(1) = 1 by computation. Finally we have

χ(p) =
∑
j≥1

p|S|W j ≤ p ·

∑
j≥1

W j

 = p . (125)

□

C Debiasing
Proposition C.1 (Debiasing spin glass algorithms). LetA be a deterministic algorithm for optimizing
an instance H of SGξ such that

1. A is overlap-concentrated

2. H(A(H)) ≥ v whp.

Then there is a deterministic algorithmA′ such that EA′(H) = 0 and

1. A′ is overlap-concentrated

2. H(A′(H)) ≥ v− o(n) whp.

Proof. We use the first column of J(2) to symmetrize the algorithm. Since the first column is only a
small fraction of the input, this will not significantly affect the output value. Our technique can be
interpreted as a derandomization procedure for randomized spin glass algorithms that use a small
number of random bits.

In the case of ξ(s) = c2
1s, the optimal algorithm isA(H) = sgn(J(1)) and we ignore this case.

Let C̃ ∈ Rn be the first column of J(2) and let C = sgn(C̃) ∈ {±1}n be the entrywise sign. Let

J′(p) := J(p) ◦C⊗p restricted to coordinates 2 through n. (126)

where ◦ is the entrywise/Hadamard product. The algorithm A′ runs A on J′(p) to produce a
candidate solution σ′ ∈ {±1}n−1 on coordinates 2 through n. Then it outputs C ◦ [1, σ′].

To compute the expectation, observe that C and J′(p) are probabilistically independent. Therefore

E[C ◦ [1, σ′]] = E[C] ◦ [1, E[σ′]] = 0 ◦ [1, E[σ′]] = 0 . (127)
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The value of the output is

H(C ◦ [1, σ′]) =
∑
p≥1

cp

n(p−1)/2

〈
J(p), C⊗p

◦ [1, σ′]⊗p
〉

(128)

=
∑
p≥1

cp

n(p−1)/2


〈
J′(p), σ′⊗p

〉
+

∑
(i1,...,ip)∈[n]p:

at least one equals 1

J(p)[i1, . . . , ip]σ′i1 · · · σ
′

ip

 (129)

Since σ′ is independent of J(p)[i1, . . . , ip] such that at least one index equals 1, the second term is a
mean-zero Gaussian with variance O(np−1). Whp,

=
∑
p≥1

cp

n(p−1)/2

(〈
J′(p), σ′⊗p

〉
±O(n(p−1)/2

√
log n)

)
(130)

=
∑
p≥1

cp

(n− 1)(p−1)/2

〈
J′(p), σ′⊗p

〉
± o(n) (131)

≥ v− o(n) . (132)

where the last inequality holds whp by assumption onA.

It remains to show that A′ remains overlap-concentrated. Consider t-correlated Hamiltonians
H1

t , H2
t . Let C1, C2

∈ {±1}n be the signs of the respective first columns of J(2) and let q = E[C1
1C2

1]

(note that all of the coordinates have the same distribution). We have

E[R(A′(H1
t ),A

′(H2
t ))] = q ·E[R(σ′1, σ′2)] . (133)

We also have

R(A′(H1
t ),A

′(H2
t )) =

1
n

C1
1C2

1 +
1
n

n∑
i=2

σ′1i σ
′2
i C1

i C2
i . (134)

As before, σ′ and C1, C2 are independent. With σ′ fixed, the terms σ′1i σ
′2
i C1

i C2
i are independent

with deviation from the mean bounded by 2. Their mean over C1, C2 is q ·R(σ′1, σ′2). Therefore by
Bernstein’s inequality,

Pr
C1,C2

[∣∣∣R(A′(H1
t ),A

′(H2
t )) − q ·R(σ′1, σ′2)

∣∣∣ ≥ L
n

]
≤ exp

(
−L2/2

n + 2L/3

)
.

By overlap concentration,

Pr
[∣∣∣q ·R(σ′1, σ′2) − q ·E[R(σ′1, σ′2)]

∣∣∣ ≥ δ] ≤ on(1) . (135)

Take L
n = δ and apply the triangle inequality and a union bound to conclude the claim. □

Proposition C.2 (Debiasing random CSP algorithms). The same statement holds for the model CSPΛ(α).
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Proof. In the CSP model, we may use the first n
log n constraints to symmetrize the algorithm. Since

the entropy of a single constraint is approximately k log n, this will provide at least n bits of entropy
for symmetrization.8 Any ω(1) bits of entropy are enough to maintain overlap concentration whp.

Let I be the instance of CSPΛ(α). Let C̃ be the first n
log n clauses of the CSP and let C ∈ {±1}n extract

the bit labels of the first variable in each clause, so that C equals n independent random bits. Let I′

be the CSP instance consisting of the remaining clauses of I, then flipping the sign of the variable i
by Ci in each constraint.

The algorithmA′ runsA on I′ to produce a candidate solution σ′ ∈ {±1}n. Then it outputs C ◦ σ′.

The analysis proceeds as in the previous proof. Since C and I′ are independent,

E[C ◦ σ′] = E[C] ◦E[σ′] = 0 ◦E[σ′] = 0 . (136)

The number of clauses used in C̃ is o(n), hence the Hamiltonian value is affected by at most o(n).

Overlap concentration ofA′ follows exactly as in the prior proof. □

8This is called randomness extraction in computer science literature.
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