
Sum-of-Squares Lower Bounds for
Densest k-Subgraph

Chris Jones* Aaron Potechin† Goutham Rajendran‡ Jeff Xu§

June 1, 2023

Abstract

Given a graph and an integer k, Densest k-Subgraph is the algorithmic task of
finding the subgraph on k vertices with the maximum number of edges. This is a fun-
damental problem that has been subject to intense study for decades, with applications
spanning a wide variety of fields. The state-of-the-art algorithm is an O(n1/4+ε)-factor
approximation (for any ε > 0) due to Bhaskara et al. [STOC ’10]. Moreover, the
so-called log-density framework predicts that this is optimal, i.e. it is impossible for
an efficient algorithm to achieve an O(n1/4−ε)-factor approximation. In the average
case, Densest k-Subgraph is a prototypical noisy inference task which is conjectured
to exhibit a statistical-computational gap.

In this work, we provide the strongest evidence yet of hardness for Densest k-
Subgraph by showing matching lower bounds against the powerful Sum-of-Squares
(SoS) algorithm, a meta-algorithm based on convex programming that achieves state-
of-art algorithmic guarantees for many optimization and inference problems. For
k ≤ n

1
2 , we obtain a degree nδ SoS lower bound for the hard regime as predicted by the

log-density framework.
To show this, we utilize the modern framework for proving SoS lower bounds

on average-case problems pioneered by Barak et al. [FOCS ’16]. A key issue is that
small denser-than-average subgraphs in the input will greatly affect the value of the
candidate pseudoexpectation operator around the subgraph. To handle this challenge,
we devise a novel matrix factorization scheme based on the positive minimum vertex
separator. We then prove an intersection tradeoff lemma to show that the error terms
when using this separator are indeed small.

*Bocconi University. chris.jones@unibocconi.it. Supported in part by the ERC under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 834861).

†University of Chicago. potechin@uchicago.edu. Supported in part by NSF grant CCF-2008920.
‡Carnegie Mellon University. gouthamr@cmu.edu. Supported in part by NSF grants CCF-1816372

and CCF-2008920.
§Carnegie Mellon University. jeffxusichao@cmu.edu. Supported in part by NSF CAREER Award

#2047933 and CyLab Presidential Fellowship.

Contents

1 Introduction 1
1.1 Our contributions . 2
1.2 The log-density framework . 4
1.3 Our approach . 5
1.4 Related work . 7
1.5 Organization of the paper . 9

2 Preliminaries 9
2.1 The Sum-of-Squares algorithm . 9
2.2 Moment matrices . 10
2.3 p-biased Fourier analysis and graph matrices 11
2.4 Norm bounds . 13
2.5 Graph matrix calculus: factoring . 13
2.6 Graph matrix calculus: composition . 14
2.7 Graph matrix calculus: intersections . 15
2.8 Graph matrix calculus: improper shapes and linearization 16
2.9 Pseudocalibration . 18

3 Positive Minimum Vertex Separator Decomposition 21
3.1 Motivation for the positive minimum vertex separator 21
3.2 PMVS subroutine . 23
3.3 Intersection term operation . 25
3.4 Summary of the operations and overall decomposition 26

4 Combinatorial Norm Charging Arguments 28
4.1 Setup . 28
4.2 Slack for middle shapes . 31
4.3 Slack for the PMVS subroutine . 32
4.4 Slack for intersection terms . 37
4.5 Slack for Removing Middle Edge Indicators 45
4.6 Final slack lower bound . 46

5 Conclusion 47

i

A Additional Content on Graph Matrices 55
A.1 Proof of Proposition 2.23 . 55
A.2 Additional definitions . 56

B Densest subgraph weight function 56

C Requirements for Combinatorial Adjustment Terms 57

D Norm bounds 58
D.1 Conditioning . 62

E Formal Approximate PSD Decomposition 68
E.1 Starting point for the approximate PSD decomposition 68
E.2 Interaction patterns . 70
E.3 The approximate PSD decomposition . 73
E.4 Analyzing Λ . 77
E.5 c-function bounds . 85
E.6 Truncation error . 89
E.7 Well-conditionedness of L . 93

F Computing Ẽ[1] 97

ii

1 Introduction

In the Densest k-Subgraph problem, we are given an undirected graph G on n vertices and
an integer k and we want to output the subgraph on k vertices with the most edges, or in
other words, the subgraph on k vertices with the highest edge density. This is a natural
generalization of the k-clique problem [Kar72] and has been subject to a long line of
work for decades [FS+97, SW98, FPK01, FL01, AHI02, Fei02, Kho06, GL09, BCC+10, RS10,
AAM+11, BCG+12, Bar15, HWX15, Ame15, HWX16, BKRW17, Man17, BA20, KL20]. This
problem has been the subject of intense study partly because of its numerous connections
to other problems and fields (e.g. [HJ06, HJL+06, KS07, Pis07, KMNT08, AC09, CHK11,
HIM11, LNV14, CMVZ15, CL15, CLLR15, SFL16, CZ17, TV17, Lee17, CDK+18, MWZ23])
The best known approximation algorithm for this problem yields an approximation factor
of O(n1/4+ε) for any constant ε > 0, due to [BCC+10]. On the other hand, it is conjectured
that no efficient algorithm can achieve an O(n1/4−ε) approximation.

Densest k-Subgraph is a compelling problem because random instances (Erdős-Rényi
graphs) are conjectured and widely believed to be the ”hardest” instances for algorithms.
In fact, the insight that “worst case is average case” was crucial to the aforementioned
algorithm in [BCC+10]. Their idea of going from average-case instances to worst-case
instances was generalized into the log-density framework (more in Section 1.2), which has
been further applied to various other problems [CDK12, CDM17, CMMV17]. Since an
algorithm for random instances seems to be the crucial conceptual step needed to solve
the problem on all instances, understanding these random instances is a pressing topic.

As stated in [BCC+10, BCG+12, BKRW17, Man17], Densest k-Subgraph on a random
graph is a landmark question in the field of average-case complexity. Moreover, the
conjectured hardness of this problem on random instances (which is the focus of our
work) has been used for applications in finance [ABB+10] and cryptography [ABW10].
However, evidence of hardness for Densest k-Subgraph stands to be improved, both in
the average-case and worst-case settings. For example, even in the worst-case setting, no
work has been able to show that Densest k-Subgraph is hard to nε-approximate for a fixed
ε > 0 using any reasonable complexity-theoretic assumption (although some works come
close, see Section 1.4). In the more interesting average-case setting of random graphs,
relatively little progress has been made to justify hardness, let alone match the log-density
framework.

In this work, we study the hardness of Densest k-Subgraph on random graphs
through a generic, powerful algorithm for optimization known as the Sum-of-Squares
(SoS) hierarchy [Sho87, Nes00, Par00, Gri01, Las01]. The SoS hierarchy is a family of
semidefinite programming relaxations for polynomial optimization problems which im-
plements a certain type of “sum-of-squares reasoning”. Arguably at the center stage of
average-case complexity in recent years, SoS has proven to be a highly effective tool for
combinatorial and continuous optimization. Indeed, the SoS hierarchy is rich enough
to capture the state-of-the-art convex relaxations for Sparsest Cut [ARV04], Max-Cut
[GW95], all Max k-CSPs [Rag08], etc. Sum-of-Squares has also led to new algorithms for

1

approximating CSPs [AJT19, BBK+21, BHKL22] and breakthroughs in robust statistics
[KS17, HL18, RSS18, KKM18, Hop20, BP21, BK20], a highlight being the resolution of
longstanding open problems in Gaussian mixture learning (over a decade of work culmi-
nating in [BDJ+20, LM21]). Moreover, for a large class of problems, it has been shown that
SoS algorithms are the most effective among all semidefinite programming relaxations
[LRS15]. Therefore, understanding the limits of SoS algorithms is an important research
endeavour and lower bounds against SoS serve as strong evidence for algorithmic hard-
ness [HKP+17, Hop18, Kun21].

In this paper, we prove that for k ≤ n
1
2 , SoS of degree nδ does not offer any significant

improvement in the conjectural hard regime of random instances for Densest k-Subgraph
as predicted by the log-density framework. This settles the open questions raised in
the works [BCG+12, Raj18, CM18]. Considering that the algorithm of Bhaskara et al.
[BCC+10] matching the log-density framework is captured by SoS, our lower bound
completes the picture of the performance of SoS for Densest k-Subgraph for k ≤ n

1
2 .

This gives solid evidence that the conjectured approximability thresholds for Densest
k-Subgraph are correct.

1.1 Our contributions

We will now describe our results on SoS lower bounds for Densest k-Subgraph that match
the predictions of the log-density framework (to be described in Section 1.2).

Consider the following hypothesis testing variant of the Densest k-Subgraph problem.
For an integer n and a real p ∈ [0, 1], let Gn,p denote the Erdős-Rényi random distribution
where a graph on n vertices is sampled by choosing each edge to be present independently
with probability p. For parameters n, k ∈ N and p, q ∈ [0, 1], we are given a graph G
sampled either from

1. The null distribution Gn,p or

2. The alternative distribution where we first sample G ∼ Gn,p, then a set H ⊆ V(G) is
chosen by including each vertex with probability k

n , and finally we replace H by a
sample from G|H|,q.

and our goal is to correctly identify which distribution it came from, with non-negligible
probability.

The hypothesis testing question is a “planted model” of Densest k-Subgraph which is
conjectured to exhibit a statistical-computational gap [BB20, BBH+20]. With high probability,
for q slightly larger than p, the subgraph H in the alternative distribution is truly the densest
subgraph of G with size k (hence the null and alternative distributions are statistically
distinguishable), but it is conjecturally computationally impossible to distinguish the two
cases (in the parameter regime below).

2

Studying algorithms for this hypothesis testing variant was crucial to the log-density
framework [BCC+10], which both generalizes an algorithm for the hypothesis testing
variant into a worst-case algorithm, and predicts the relationships between n, k, p, q for
which the hypothesis testing problem is hard. In particular, consider the setting

k = nα, p = n−β, q = n−γ

for constants α ∈ (0, 1/2], β ∈ (0, 1),γ ∈ (0, 1), a notation that we will use throughout this
paper. According to the framework, it’s algorithmically hard to solve the problem if

γ > αβ

That is, in this regime, no polynomial-time algorithm can distinguish the two distributions
with probability at least 2/3 of success.1

To state our result, we recall that the SoS hierarchy is a family of convex semidefinite
programming relaxations parameterized by an integer DSoS called the degree or level of SoS.
The relaxation gets tighter as DSoS increases but the runtime also increases at the rate2 of
approximately nO(DSoS) for degree DSoS SoS. Thus, conceptually degree O(1) corresponds
to polynomial time, and degree nδ to subexponential time algorithms. In this work, we
study the performance of degree DSoS = nδ Sum-of-Squares on the Densest k-Subgraph
problem for a constant δ > 0 and obtain strong lower bounds.

Because of the well-known duality between SoS programs and pseudo-expectation
operators, to show a lower bound, it suffices to show a feasible pseudo-expectation oper-
ator Ẽ satisfying the constraints. For a formal definition of SoS, see Section 2.1. We are
now ready to state our result.

Theorem 1.1. For all constants α ∈ (0, 1/2], β ∈ (0, 1),γ ∈ (0, 1) such that γ > αβ, there
exists δ > 0 such that with high probability over G = (V, E) ∼ Gn,p, there exists a degree nδ

pseudo-expectation operator Ẽ on SoS program variables {XXu}u∈V such that

1. (Normalization) Ẽ[1] = 1± o(1).

2. (Subgraph on k vertices) Ẽ[
∑

v∈V XXv] = k(1± o(1)).

3. (Large density) Ẽ[
∑
{u,v}∈E XXuXXv] =

k2q
2 (1± o(1))

4. (Feasibility) The moment matrix M corresponding to Ẽ is positive semidefinite.
1When α > 1

2 , i.e. k = ω(
√

n), spectral algorithms beat the log-density threshold [BCC+10, KL20].
Spectral algorithms are captured by degree-2 SoS. Various works have also studied other special settings
(e.g. when q = 1, or when p, q are constants). See Section 1.4.

2In pathological cases, there may be issues with bit complexity [O’D17, RW17]

3

This in particular implies that, in the predicted hard regime of the log-density frame-
work, SoS cannot be used to solve the Densest k-Subgraph problem as stated above. As
discussed earlier, these SoS lower bounds offer strong evidence that for k ≤

√
n, it is

unlikely that efficient algorithms can beat the predictions of the log-density framework
for Densest k-Subgraph.

By setting α = 1/2, β = 1/2 and γ = 1/4 + ε, we obtain the following important
corollary.

Corollary 1.2. For any ε > 0, there exists a constant δ > 0 such that degree-nδ Sum-of-Squares
exhibits an integrality gap of O(n1/4−ε) for the Densest k-Subgraph problem.

This corollary essentially matches the best known algorithmic guarantees for the Dens-
est k-subgraph problem [BCC+10], namely an efficient O(n1/4+ε)-factor approximation
algorithm, thereby completing the picture for Sum-of-Squares.

1.2 The log-density framework

For more context on our results, we give a brief description of the log-density framework
[BCC+10]. See [KL20, Section 1.3] or [CM18] for a more detailed treatment.

The log-density framework is a relatively recent technique that devises worst-case
algorithms for problems by studying algorithms for average-case instances. It was in-
troduced in the context of the Densest k-Subgraph problem and has been since utilized
for many other problems such as Lowest Degree 2-Spanner, Smallest p-Edge Subgraph
(SpES) [CDK12], Small Set Bipartite Vertex Expansion (SSBVE) [CDM17], Label Cover,
2-CSPs [CMMV17], etc.

Formally, for a graph on n vertices with average degree d, we define its log-density
to be log d

log n . Consider the hypothesis testing problem from Section 1.1. The log-density
framework predicts that it is possible to algorithmically distinguish the distributions
and solve the hypothesis testing problem if and only if the log-density of the planted
subgraph is larger than the log-density of the original graph before planting. Since the
average degree of a graph sampled from Gn,p is ≈ np, this framework predicts that the
distributions are distinguishable if for some constant ε > 0,

log(kq)
log k

≥
log(np)

log n
+ ε ⇐⇒ γ ≤ αβ− ε′

for some constant ε′ > 0.
Moreover, and of extreme importance to us, the framework also predicts algorithmic

hardness if the other direction of the inequality holds. That is, if

γ ≥ αβ+ ε

4

for some constant ε > 0, the log-density framework predicts that no efficient algorithm
can distinguish the two distributions. For the sake of clarity, let’s look at the special case
α = 1/2, β = 1/2 and γ = 1/4 + ε. Then, we expect it to be hard for efficient algorithms
to distinguish the following distributions,

1. The null distribution Gn, 1
√

n

2. The alternative distribution where we first sample G ∼ Gn, 1
√

n
, then a set H ⊆ V(G)

is chosen by including each vertex with probability 1
√

n
(so |H| ≈

√
n), and finally we

replace H by a sample from G
|H|, 1

n1/4+ε
.

As an aside, note that in this case, since the average degree of the densest k-subgraph
for the null distribution is Õ(

√
n) and that of the alternative distribution is Ω̃(n3/4−ε),

hardness of the distinguishing problem implies n1/4−ε-factor approximation hardness for
Densest k-Subgraph.

1.3 Our approach

Since Sum-of-Squares is a convex program, in order to prove a lower bound, it suffices
to construct a feasible point, i.e. a pseudoexpectation operator or moment matrix, which
is a large nonlinear random matrix that depends on the input. At a high level, our
proof leverages an existing strategy for proving lower bounds against the Sum-of-Squares
algorithm on random inputs: use pseudocalibration [BHK+16] to construct a candidate
moment matrix, then study the spectrum of the candidate matrix using graph matrices
[AMP20]. This strategy has been successfully applied in several contexts [BHK+16, PR20,
GJJ+20, JPR+22], although in each case, including ours, significant additional insights
have been required.

Given a random input graph, the first step is to construct the candidate pseudoexpec-
tation operator or moment matrix. Pseudocalibration suggests a candidate matrix, which
we can use here without further thinking. Recall that a semidefinite program optimizes
over the cone of positive semi-definite (PSD) matrices; the main challenge is showing that
the candidate moment matrix is feasible (PSD) with high probability over the random
input.

The main issue we face is that matrix factorization strategies in prior works do not
obviously lead to dominant PSD terms in our setting. There are several steps in the
existing framework:

1. Express the candidate moment matrix Λ in the graph matrix (i.e. Fourier) basis;

2. Identify a class of spectrally dominant graph matrices in Λ which are together
approximately PSD;

5

3. Perform an approximate PSD decomposition to create PSD terms plus additional
error terms;

4. Show that all non-dominant terms and error terms can be charged to the dominant
PSD terms, i.e. they are “negligible”.

For the purposes of the current discussion, it is enough to know that each graph matrix
in step (1) measures how a fixed small subgraph, or shape, contributes to the candidate
moment matrix, and furthermore that the spectral norm of a graph matrix can be read off
of combinatorial properties of the small shape graph. It was shown in [JPR+22, RT23] that
the norm of a graph matrix is determined up to lower-order factors by the Sparse Minimum-
weight Vertex Separator (SMVS) of the shape (Theorem 2.21). For intuition, shapes with
smaller, denser separators have larger norms.

In order to identify the class of norm-dominant shapes in step (2), previous work de-
composes shapes using their leftmost and rightmost MVS (in contrast to SMVS), yielding
for each shape an approximately PSD term that spectrally dominates the original graph
matrix. Using the norm bounds, combinatorial arguments about vertex separators are
then employed to show that all deviation terms in step (4) are small.

Although prior work has avoided using the SMVS as the decomposition criterion and
used the MVS instead, the SMVS is a necessity in our setting, because Densest k-Subgraph
is sensitive to small, local structures in the input. To explain, for a fixed set of vertices U, if
many vertices in U have a common exterior neighbor or are part of a denser-than-average
subgraph, then this greatly increases the algorithm’s belief that U is part of the dense
subgraph. Using the SMVS can be thought of as pinpointing, for each shape, the small
dense subgraph which has the strongest effect on the graph matrix’s norm.

A decomposition based on SMVS poses new conceptual challenges. Surprisingly, the
SMVS decomposition, without extra care, may rather lead to some supposedly “PSD”
terms being negative instead. We address these technical challenges, alongside our so-
lution using the Positive Minimum-weight Vertex Separator (see Section 3.1 for a technical
overview) after providing the definitions needed for working with graph matrices.

Once we have properly identified the dominant PSD terms, what remains is to prove
that the error terms in the decomposition are small using an intersection tradeoff lemma.
This is also one of our novel contributions as it is significantly different from intersection
lemmas in prior works. This combinatorial lemma is the most crucial part of the proof, as
it ensures that the error terms in the approximate PSD decomposition have small enough
norms.

It’s worth highlighting that the log-density criterion γ > αβ occurs multiple times
throughout our proof, which is fascinating to the authors. A partial explanation is that if
we look at the contribution of each Fourier character in Lemma 4.8, the quantity γ − αβ
measures the decay as the degree of the Fourier character increases, i.e. it’s the edge
decay in a shape. Therefore, this has a dampening effect on the higher Fourier levels in
the decomposition. Such a Fourier decay is ubiquitous in the analysis of the low-degree

6

likelihood ratio [HKP+17, Hop18, KWB22] and has been important in prior average-case
SoS lower bounds [BHK+16, PR22, GJJ+20, JPR+22].

1.4 Related work

Algorithms Algorithms for the Densest k-Subgraph problem have been widely studied,
e.g. [FS+97, SW98, FPK01, FL01, AHI02, ST08, GL09, BCC+10, MM15, Ame15, Bar15,
BKRW17, BA20, KL20], and we do not attempt to give an overview of them (see e.g.
[KL20] for a nice overview of some of them). For general graphs, the work [KP93] (which
also introduced the problem) gave a polynomial time Õ(n0.3885)-factor approximation
algorithm. This was later improved to a O(n1/3−ε)-factor approximation (for a constant
ε ≈ 1/60) in [FPK01] and to a O(n0.3159)-factor approximation in [GL09] respectively. The
seminal work of [BCC+10], which also proposed the log-density framework improved
this to give an algorithm that achieves a n1/4+ε-factor approximation in time nO(1/ε), for
all constants ε > 0. This is conjectured to be the best achievable by efficient algorithms.

Lower bounds for Densest k-Subgraph Because of its conceptual significance and wide
applicability, studying lower bounds against the Densest k-Subgraph problem is an im-
portant research endeavour. We give a non-exhaustive list of such prior works below.

1. Conditional hardness: It’s well known that Densest k-Subgraph is NP-hard to solve
exactly, but to the best of our knowledge, NP-hardness of even constant factor
approximation is unknown. There are various other conditional hardness results
assuming more than P , NP, e.g. [Fei02, Kho06, RS10, AAM+11, BKRW17, Man17].
We highlight the influential work of Manurangsi [Man17], who assuming the Expo-
nential Time Hypothesis showed almost-polynomial factor hardness for this prob-
lem. See the same paper for a more detailed list of other conditional hardness results.
It’s worth noting that none of these results achieve polynomial factor hardness.

These approaches argue that Densest k-Subgraph is hard by reduction. One source
of difficulty is that reductions are not as successful for average-case problems, since a
reduction tends to distort the input distribution and produce somewhat pathological
outputs. Proving hardness of Densest k-Subgraph may be possible using a reduction
to a novel non-random instance, but, if it is true that random (or sufficiently pseudo-
random) graphs are the only hard instances of Densest k-Subgraph, then a stronger
theory of average-case reductions may be a prerequisite. Some recent works make ex-
citing progress on realizing average-case reductions [BBH18, BB20, BABB21, HS21].

The remaining lower bounds, including ours, are unconditional results that do not
rely on any conjectures.

2. Sherali-Adams hardness: An integrality gap of Ω(nα(1−α)−o(1)) was shown for the
degree-Ω̃(log n) Sherali-Adams hierarchy (which is a family of linear programming

7

relaxations) in [BCG+12, CM18]. Our result is stronger than these Sherali-Adams
lower bounds in three important ways. First, we consider SoS rather then Sherali-
Adams. The SoS hierarchy captures the Sherali-Adams hierarchy and is known to be
much stronger in many cases (e.g., see [KV15, DKSV06, CMM09, CLRS16, KMR17]
in conjunction with [GW95, ARV09]) therefore we imply their results. Second, we
obtain an nδ degree lower bound as opposed to an Ω̃(log n) degree lower bound.
Finally, while these Sherali-Adams lower bounds are for the particular setting where
β = α (the setting that maximizes the integrality gap for a fixed α), our lower bounds
work for the entire range of parameters α, β,γ.

3. SoS hardness: Worst-case SoS lower bounds have been exhibited in [BCG+12, MM15,
CMMV17] obtained by reducing from Max k-CSP hardness results, within the SoS
framework as pioneered by [Tul09]. However, these SoS lower bounds were not
optimal even for worst-case instances, since they didn’t match known algorithmic
guarantees (to be more precise, they showed an n1/14−O(ε)-factor lower bound for
degree nε SoS, whereas n1/4−O(ε)-factor hardness is conjectured). Our work on the
other hand studies average-case instances (as opposed to worst-case) and matches
the guarantees of known algorithms. Therefore, we significantly improve these prior
hardness results and close the gap. Moreover, our results can be reduced à la [Tul09]
to show SoS hardness for other problems such as Densest k-Subhypergraph [Raj18,
Theorem 3.17] and also potentially Minimum p-Union [Raj18].

Average-case Sum-of-Squares lower bounds Sum-of-Squares lower bounds for average-
case problems have proliferated in the last decade, for example, Planted Clique [HKP15,
MPW15, BHK+16], Sherrington-Kirkpatrick Hamiltonian [MRX20, GJJ+20, Kun20], Sparse
and Tensor PCA [HKP+17, PR20, PR22] and Max k-CSPs [KMOW17]. Most of these works
have been in the colloquial “dense” regime where the random inputs are sampled from
Gn,1/2 or the standard normal distribution N(0, 1). Recently, average-case SoS lower
bounds have been shown for the sparse setting, i.e. inputs sampled from Gn,p where
p = o(1), for the problem of Maximum Independent Set [JPR+22, RT23]. The common
thread underlying recent SoS lower bounds, including ours, is spectral analysis of large
random matrices. See the works [PR20, Raj22, Jon22] for additional background and
intuition on the matrix analysis framework used in these lower bounds.

The low-degree likelihood ratio hypothesis We add that similar predictions as the
log-density framework for the threshold of algorithmic distinguishability may possibly
be obtained by analyzing the low-degree likelihood ratio [HKP+17, Hop18, KWB22]. The
low-degree likelihood ratio is used in the context of noisy statistical inference problems
to predict, among other things, the existence of statistical-computational gaps, i.e. when
the signal (the planted dense subgraph) is information-theoretically detectable (and hence
recoverable by a brute-force search), but is not detectable by efficient algorithms. In the
same context, the low-degree likelihood ratio is used to predict the distinguishing power

8

of low-degree polynomial algorithms. In [SW22], they analyze the low-degree likelihood
ratio for certain parameter regimes of Densest k-Subraph, but their results do not seem
to recover the predictions of the log-density framework precisely. Our Proposition 2.52
can be interpreted as showing that the low-degree likelihood ratio is 1 + o(1) in the entire
hard regime for the log-density framework.

Planted Dense Subgraph and Planted Clique conjectures In our work, we have fo-
cused on the regime α ∈ (0, 1/2], β,γ ∈ (0, 1). Other instantiations of these parameters
have also been subject to intense study in recent years and various conjectures predicting
the limits of efficient algorithms have been proposed, broadly referred to as the Planted
Dense Subgraph conjecture or in the case γ = 0, the Planted Clique conjecture. Fur-
thermore, assuming these conjectures, inapproximability results have been derived for
various problems such as Sparse PCA, Stochastic Block model, Biclustering, etc. See e.g.
[HWX15, CX14, BBH18, BBH19, BB19, MRS20, PR20, PR22] and references therein. Dens-
est k-Subgraph lies at the heart of many of these reductions, therefore it’s plausible that
our hardness result can be exploited to derive better inapproximability results for various
other problems, which we leave for future work.

1.5 Organization of the paper

The rest of the paper is organized as follows. We start with a brief overview in Section 2
of graph matrices, which are at the heart of our spectral analysis, using it to construct
our candidate moment matrix following the pseudo-calibration framework in Section 2.9.
With the matrix in hand, we then delve into the extensive PSDness analysis that forms the
bulk of work. We motivate and discuss our conceptually novel PMVS decomposition in
Section 3, and show the combinatorial analysis for the key “charging” arguments of the
PSDness proof in Section 4. We defer the formal details and other technical verifications
to appendices.

Acknowledgments We thank Madhur Tulsiani for useful discussions. Most of the work
for this project was completed while CJ and GR were PhD students at the University of
Chicago.

2 Preliminaries

2.1 The Sum-of-Squares algorithm

We now formally describe the Sum-of-Squares hierarchy. For a detailed treatment and
survey of SoS, see e.g. [RSS18, FKP+19, Sch17, Hop18, Jon22].

9

SoS is used to check feasibility of a system of polynomials. Given a graph G = (V, E),
the simplest polynomial formulation for the existence of a subgraph with k vertices and
m edges encodes the 0/1 indicator of the subgraph:

Variables: XXv, ∀v ∈ V
Constraints:∑
v∈V

XXv = k (Vertex count)∑
{u,v}∈E

XXuXXv = m (Edge count)

XX2
v = XXv ∀v ∈ V (Boolean)

The sum-of-squares algorithm is parameterized by the degree DSoS ∈ N. We assume
DSoS is even. For formal variables XX1, . . . , XXn, let R≤DSoS [XX1, . . . , XXn] denote the set of
polynomials with degree at most DSoS.

Definition 2.1 (Pseudoexpectation). Given a set of variables XX1, . . . , XXn, a degree-DSoS pseu-
doexpectation operator is a linear functional Ẽ : R≤DSoS [XX1, . . . , XXn]→ R such that Ẽ[1] = 1.

Definition 2.2 (Satisfying an equality constraint). A degree-DSoS pseudoexpectation operator
Ẽ satisfies a polynomial constraint “ f (XX) = 0” if Ẽ[f (XX)p(XX)] = 0 for all polynomials p(XX)
such that deg(p) + deg(f) ≤ DSoS.

Definition 2.3 (SoS-feasible). A degree-DSoS pseudoexpectation operator Ẽ is SoS-feasible if
for every polynomial p ∈ R≤DSoS/2[XX1, . . . , XXn], Ẽ[p(XX)2] ≥ 0.

Definition 2.4 (Sum-of-squares algorithm). Given a system of polynomial constraints { fi(XX) =
0} in n variables XX1, . . . , XXn, the degree-DSoS Sum-of-Squares algorithm checks for the existence
of an SoS-feasible degree-DSoS pseudoexpectation operator Ẽ that satisfies the constraints. If Ẽ

exists, the algorithm outputs “may be feasible”, otherwise it outputs “infeasible”. This can be
done algorithmically by solving a semidefinite program of size nO(DSoS) that searches for a feasible
moment matrix (Definition 2.7).

If no pseudoexpectation operator exists, then SoS successfully refutes the polynomial
system (i.e., it proves that there is no dense subgraph in the input). On the other hand,
if a pseudoexpectation operator exists, SoS cannot rule out that the polynomial system is
feasible (the pseudoexpectation operator fools SoS, but it may or may not correspond to
a true distribution on feasible points). A lower bound against SoS consists of a feasible
pseudoexpectation operator in the case when the system is actually infeasible.

2.2 Moment matrices

Analysis of the SoS algorithm on an n-variable polynomial system is typically accom-
plished by formulating it in terms of large matrices indexed by subsets of [n], known as

10

moment matrices.

Definition 2.5 (Matrix index). Let I be the set of ordered subsets of [n] of size at most DSoS/2.

Remark 2.6. Another reasonable definition of I uses subsets of [n] and not ordered subsets. For
technical simplifications, we include an ordering.

The degree-DSoS sum-of-squares algorithm can be equivalently formulated in terms
of RI×I matrices, which are called moment matrices.

Definition 2.7 (Moment matrix). The moment matrix Λ = Λ(Ẽ) associated to a degree-DSoS

pseudoexpectation Ẽ is an I-by-I matrix defined as

Λ[I, J] := Ẽ
[
XXI
·XXJ

]
.

Fact 2.8. Ẽ is SoS-feasible if and only if Λ(Ẽ) ⪰ 0.

Definition 2.9 (SoS-symmetric). A matrixΛ ∈ RI×I is SoS-symmetric ifΛ[I, J] depends only
on the disjoint union I⊔ J as an unordered multiset. Along with the additional constraintΛ[∅, ∅] =
1, this characterizes Λ ∈ RI×I which are moment matrices of degree-DSoS pseudoexpectation
operators.

In the presence of Boolean constraints “XX2
i = XXi”, a moment matrix satisfies these

constraints if and only if Λ[I, J] depends only on the union I ∪ J as an unordered set
(ignore duplicates).

2.3 p-biased Fourier analysis and graph matrices

We are interested in matrices which depend on a random graph G ∼ Gn,p. To analyze
these as functions of G, we encode G via its edge indicator vector in {0, 1}(

n
2) and perform

p-biased Fourier analysis.

Definition 2.10 (Fourier character). χ denotes the p-biased Fourier character,

χ(0) = −
√

p
1− p

, χ(1) =

√
1− p

p
. (1)

For H a subset or multi-subset of ([n]2), let χH(G) :=
∏

e∈H χ(Ge).

Definition 2.11 (Ribbon). A ribbon is a tuple R = (AR, BR, E(R)) where AR, BR ∈ I and
E(R) ⊆ ([n]2). The corresponding matrix MR ∈ RI×I is:

MR[I, J] =

χE(R)(G) I = AR, J = BR

0 otherwise .

11

The ribbon matrices MR are mean-zero, orthonormal under the expectation of the
Frobenius inner product on matrices, and form a basis for all RI×I-valued functions of G.
They are the natural Fourier basis for random matrices that depend on G.

In the matrices that we study, the coefficient on a ribbon will not depend on the
particular labels of the ribbon’s vertices, but only on the graphical structure of the ribbon.
This graphical structure is called the shape.

Definition 2.12 (Shape). A shape α is an equivalence class of ribbons under relabeling of the
vertices (equivalently, permutation by Sn). Each shape is associated with a representative graph
(Uα, Vα, E(α)). We let V(α) := Uα ∪Vα ∪V(E(α)).

For an example of a shape, see Fig. 1. We use the convention of Greek letters such as
α,γ, τ for shapes and Latin letters R, L, T for ribbons.

Definition 2.13 (Embedding). Given a shape α and an injective function φ : V(α) → [n], we
let φ(α) be the ribbon obtained by labeling α in the natural way (preserving the order on Uα and
Vα).

A ribbon R has shape α if and only if R can be obtained by an embedding of V(α) into
[n]. Note that different embeddings may produce the same ribbon.

Definition 2.14 (Graph matrix). Given a shape α, the graph matrix Mα is

Mα =
∑

injective φ:V(α)→[n]

Mφ(α) .

The entries of a graph matrix are degree-
∣∣∣E(α)∣∣∣ monomials in the variables Ge, therefore

we think of graph matrices as low-degree polynomial random matrices in G. We call them
“nonlinear” to distinguish them from the degree-1 case, which is well-studied (being
essentially the adjacency matrix of G).

Definition 2.15 (Trivial). A ribbon or shape α is trivial if E(α) = ∅.

Definition 2.16 (Diagonal). A ribbon or shape α is diagonal if V(α) = Uα = Vα.

A diagonal shape is only nonzero on the diagonal entries of the matrix in the block
corresponding to Uα. Note that there are additional shapes which have the same support,
namely shapes which potentially have additional edges and vertices outside of Uα = Vα.
The diagonal shapes as we have defined them are the most important contributors to the
diagonal entries of the matrix.

Definition 2.17 (Transpose). The transpose of a ribbon or shape swaps AR, BR or Uα, Vα respec-
tively. This has the effect of transposing the matrix for the ribbon/shape.

12

2.4 Norm bounds

Definition 2.18 (Weight of a set). For a graph S, let w(S) = |V(S)| − logn(1/p)|E(S)|.

Definition 2.19 (Vertex separator). A vertex separator of two sets A, B in a graph G is a set
S ⊆ V(G) such that all paths from A to B pass through S.

Definition 2.20 (Sparse minimum vertex separator (SMVS)). Given a ribbon or shape α,
a sparse minimum vertex separator (SMVS) is a minimizer of w(S) over S ⊆ V(α) which
separate Uα and Vα.

Observe that up to lower-order factors, w(S) = logn

(
E[# of copies of graph S in Gn,p]

)
.

The SMVS is thus the rarest separator of α.

Theorem 2.21 (Norm bound, informal [JPR+22, RT23]). With high probability, for all proper
shapes α:

∥Mα∥ ≤ Õ
(
n
|V(α)|−|w(Smin)|

2

)
where Smin is the SMVS of α.

2.5 Graph matrix calculus: factoring

In light of the relevance of vertex separators to the spectrum of a graph matrix, a key
ingredient underlying our machinery is that each shape admits an (approximate) factor-
ization into three pieces based on its vertex separators. For the following discussion, fix a
shape α. The separators of a shape α have a natural partial order as follows.

Definition 2.22 (Left and right). A vertex separator S is left (respectively right) of a vertex
separator S′ if S separates Uα and S′ (resp. S′ and Vα).

We will define the leftmost SMVS to be the SMVS which is left of all other SMVS for α,
and similarly for the rightmost SMVS. For an example, see Fig. 1. We will decompose each
shape into three pieces: the “left shape” between Uα and the leftmost SMVS, the “middle
shape” between the leftmost and rightmost SMVS, and the “right shape” between the
rightmost SMVS and Vα. We now work towards making this formal.

Unfortunately, it is not always true that there is a unique SMVS that is left of every
SMVS. Nonetheless, we can define the leftmost SMVS in a natural and canonical way
using the following proposition, whose proof is in Appendix A.1.

Proposition 2.23. Every shape has an SMVS which is left of every SMVS. Furthermore, there is
a unique SMVS left of every SMVS with minimum vertex size.

Definition 2.24 (Leftmost and rightmost SMVS). The leftmost SMVS is the SMVS which is
left of every SMVS and has minimum vertex size. The rightmost SMVS is defined analogously.

13

Figure 1: Example of a shape α with its leftmost SMVS S and rightmost SMVS T. This

shape has norm Õ(n
8−2

2

√
1−p

p) = Õ(n3
√

p)

Definition 2.25 (Left shape). A shape σ is a left shape if the unique SMVS is Vσ (hence, it is
both leftmost and rightmost).

Definition 2.26 (Middle shape). A shape τ is a middle shape if Uτ is the leftmost SMVS, and
Vτ is the rightmost SMVS.

Definition 2.27 (Right shape). A right shape σ is the transpose of a left shape.

We also extend these definitions to ribbons. By splitting a ribbon across its leftmost and
rightmost SMVS, we have the following canonical decomposition theorem for ribbons, to
be presented formally in the next section.

Proposition 2.28 (informal version of Proposition 2.33). Every ribbon R can be expressed
uniquely as the composition of a left, middle, and right ribbon.

2.6 Graph matrix calculus: composition

Multiplying graph matrices can be carried out “diagramatically” by composing the ribbons
or shapes.

Definition 2.29 (Composing ribbons). Two ribbons R, S are composable if BR = AS. The
composition R ◦ S is the ribbon T = (AR, BS, E(R) ∪ E(S)). Although it never occurs in the
current work, see the footnote3 for the case E(R)∩ E(S) , ∅.

Fact 2.30. If R, S are composable ribbons, then MR◦S = MRMS. Otherwise, MRMS = 0.

Therefore, when two matrices expressed as a linear combination of ribbons are mul-
tiplied, the effect is to compose every pair of ribbons.

The composition of two ribbons R, S can be easily visualized by drawing the two
ribbons next to each other, then identifying the sets BR and AS. However, if the vertex sets

3In this case, define R ◦ S as an improper ribbon (Definition 2.39) whose edge multiset is the disjoint
union of E(R) and E(S).

14

of two composable ribbons R, S overlap nontrivially (i.e., beyond the “necessary” overlap
BR = AS), then the resulting ribbon is smaller than this picture suggests. We will call these
types of ribbons intersection terms and classify them based on their intersection pattern. The
intersection terms are error terms in our analysis, but carefully bounding them is the most
important and difficult conceptual step of the proof.

Definition 2.31 (Properly composable). Composable ribbons R1, . . . , Rk are properly com-
posable if there are no intersections beyond the necessary ones BRi = ARi+1 .

With the above definitions and Proposition 2.23, we can deduce the main proposition
about shape and ribbon factoring. For a ribbon R and a set of edges F ⊆ ([n]2), we use the
notation R \ F to denote the ribbon (AR, BR, E(R) \ F).

Definition 2.32 (Floating component). The connected components of a ribbon R which are not
connected to AR ∪ BR are called floating components.

Proposition 2.33 (Ribbon decomposition). Every ribbon R can be expressed as

R = (L \ E(BL)) ◦M ◦ (R′ \ E(AR′))

where L, M, R′ are properly composable left, middle, and right ribbons respectively, such that
E(BL) = E(AM) and E(BM) = E(AR′). Up to the orderings of BL = AM and BM = AR′ and the
floating components, the decomposition is unique.

Proof. The existence of the decomposition follows by splitting R across the leftmost and
rightmost SMVS. Edges inside the SMVS should be put into the middle ribbon. Any
floating components can be put into the middle ribbon.

To argue uniqueness, suppose R = (L \ E(BL)) ◦M ◦ (R′ \ E(AR′)). Then BL = AM is
an SMVS of R which is left of all other SMVS of R. By the structural result Proposition A.1,
in order for L to have a unique SMVS, it must be that BL is the leftmost SMVS of R. The
same holds for R′ with respect to the rightmost SMVS.

Remark 2.34. When we decompose a ribbon, we will always put the floating components into the
middle part.

2.7 Graph matrix calculus: intersections

Based on the decomposition theorem for ribbons, it would be ideal if for any shape
α = σ ◦ τ ◦ σ′, we also had an exact matrix equality

Mα = Mσ ·Mτ ·Mσ′ .

Unfortunately this fails as we have may ”surprise” intersections beyond the necessary
ones along the boundary. Let us describe in further detail these “intersection terms”.

15

Definition 2.35 (Composing shapes). Given shapes α, β, we call them composable if Vα = Uβ
as subsets of I. The composition α ◦ β is the shape whose multigraph is the result of gluing
together α and β along Vα and Uβ (following their respective orders)4, whose left side is Uα, and
whose right side is Vβ. See the footnote5 for an additional technicality.

Definition 2.36 (Intersection pattern). For composable shapes α1,α2, . . . ,αk, let α = α1 ◦ α2 ◦

· · · ◦ αk. An intersection pattern P is a partition of V(α) such that for all i and v, w ∈ V(αi), v
and w are not in the same block of the partition. We say that a vertex “intersects” if its block has
size at least 2 and let Vintersected(αi) denote the set of intersecting vertices in αi.

Let Pα1,α2,...,αk be the set of intersection patterns between α1,α2, . . . ,αk.

Definition 2.37 (Intersection shape). For composable shapes α1,α2, . . . ,αk and an intersection
pattern P ∈ Pα1,α2,...,αk , let αP = α1 ◦ α2 ◦ · · · ◦ αk then identify all vertices in blocks of P, i.e.
contract them into a single vertex. Keep all edges.6

Proposition 2.38. For composable shapes α1,α2, . . . ,αk,

Mα1 · · ·Mαk =
∑

P∈Pα1,...,αk

MαP .

Proof. The claimed statement expands to

k∏
i=1

∑
injective φi:V(αi)→[n]

Mφi(αi) =
∑

P∈Pα1,...,αk

∑
injective φ:V(αP)→[n]

Mφ(αP) .

Each of the ribbons on the left-hand side is an injective embedding of αi into [n]; however,
the joint embedding need not be injective. The intersection pattern P cases on which
vertices overlap.

2.8 Graph matrix calculus: improper shapes and linearization

We will need to manipulate matrices expressed in the ribbon or shape basis, for example
by casing on whether certain edges exist or multiplying two matrices together. To simplify
the intermediate manipulations, we will allow ribbons to be improper. We lose uniqueness
of representation in the ribbon basis (there are multiple ways to express a given matrix
as a linear combination of improper ribbons), but the augmentation lets us easily track
combinatorial features such as the presence of specific edges or subgraphs. At the end of
the proof, we convert improper ribbons back into proper ones by linearizing them.

Our ribbons may be improper in three ways: edge indicators, products of Fourier charac-
ters, and isolated vertices. These are all contained in the following general definition.

4Although this never occurs in the current work, if an edge occurs inside both Vα and Uβ, the composition
α ◦ β is an improper shape (Definition 2.39).

5If a vertex in Vα and Uβ has degree 0, it becomes an isolated vertex in α ◦ β (Definition 2.41).
6Keep duplicated edges with multiplicity; αP may be improper (Definition 2.39).

16

Definition 2.39 (Improper ribbon). An improper ribbon is a tuple R given by
R = (AR, BR, V(R), E(R), Yes(R))where AR, BR ∈ I as before, and additionally AR ∪ BR ⊆

V(R) ⊆ [n], also E(R) is a multigraph on V(R) without self-loops, and Yes(R) ⊆ (V(R)
2). We

extend the definition of MR ∈ RI×I to:

MR[I, J] =

∏

e∈Yes(R)

1e∈E(G)

∏
e∈(V(R)

2)

χe(G)multiplicity of e in E(R) I = AR, J = BR

0 otherwise .

Definition 2.40 (Improper shape). An improper shape α is defined, as before, as an equivalence
class of improper ribbons under relabeling of the vertices. Each improper shape is associated with a
representative tuple (Uα, Vα, V(α), E(α), Yes(α)).Equivalently, a ribbon R has shape α if R can
be obtained by labeling V(α) by an injective mapping φ : V(α)→ [n].

Definition 2.41 (Isolated vertices). Let Iso(α) be the set of vertices in V(α) \ (Uα ∪Vα) which
are not incident to any edges in E(α) or Yes(α).

We linearize an improper ribbon by using identities

χk
e = c0 + c1 · χe

1e∈E(G) = c′0 + c′1 · χe

for some coefficients c0, c1, c′0, c′1. The equalities hold for inputs from {0, 1}.

Definition 2.42 (Linearization). Given an improper ribbon R, we linearize R by using the
equality

MR =
∑

proper ribbons S

cSMS

where cS are the Fourier coefficients of MR. The ribbons S which appear with nonzero coefficient
cS are called the linearizations of R.

When we linearize just the multiedges χk
e into either 1 or χe, we use the following

proposition to bound the new coefficient.

Proposition 2.43. Given an improper ribbon R, if we linearize the multiedges, the coefficient on
a resulting ribbon S satisfies

|cS| ≤

√

1− p
p

∑

e∈mul(R) mult(e)−1−1e vanishes

where mul(R) is the set of multi-edges in R.

17

Proof. The linearization coefficients are χk
e = E[χk

e] + E[χk+1
e]χe. By induction,

∣∣∣E[χk
e]
∣∣∣ ≤(√

1−p
p

)k−2
for all k ≥ 2, which yields the claim.

We will estimate the norm of an improper shape by linearizing it and taking the
maximum norm among all of its linearizations.

2.9 Pseudocalibration

Pseudocalibration is a heuristic used to construct candidate pseudoexpectation operators
Ẽ for SoS lower bounds, introduced in the context of SoS lower bounds for Planted Clique
[BHK+16]. See e.g. [BHK+16, RSS18, GJJ+20] for a formal description.

The pseudocalibrated operator Ẽ[XXI] is defined using the Fourier coefficients of the
corresponding function XXI(H) evaluated on the planted distribution. First we need to
compute these Fourier coefficients. A similar computation was performed by [CM18] to
exhibit integrality gaps for the Sherali-Adams hierarchy.

Lemma 2.44. Let XXI(H) be the 0/1 indicator function for I being in the planted solution i.e. I ⊆ H.
Then, for all I ⊆ [n] and α ⊆ ([n]2),

E(G,H)∼Dpl
[XXI(H) · χα(G̃)] =

(
k
n

)|V(α)∪I| q− p√
p(1− p)

|E(α)|
Proof. First observe that if any vertex of V(α) ∪ I is outside H, then the expectation is 0.
This is because either I is outside H, in which case XXI(H) = 0, or an edge of α is outside H,
in which case the expectation of this Fourier character is 0. Now, each vertex of V(α)∪ I is
in H independently with probability k

n . Conditioned on this event happening, each edge
independently evaluates to

Ee∼Bernoulli(q)χ(e) = q · χ(1) + (1− q) · χ(0) =
q− p√
p(1− p)

.

Putting these together gives the result.

Pseudocalibration suggests transferring the low-degree Fourier coefficients from the
planted distribution, in order for the pseudoexpectation operator to emulate a true expec-
tation operator from a planted distribution. As long as the size of the Fourier coefficients
is larger than the SoS degree, then SoS should not notice that we are using a truncation.

We will truncate up to shapes of size DV for a parameter DV = O(DSoS) which is
formally specified in Bound C.1.

Definition 2.45 (S). Let S be the set of (proper) ribbons R such that:

18

(i) (Degree bound) |AR| , |BR| ≤ DSoS/2

(ii) (Size bound) |V(R)| ≤ DV

We will sometimes use α ∈ S as the set of shapes with the same properties, following the convention
of using Latin letters for ribbons and Greek letters for shapes.

Definition 2.46 (M). Define the pseudocalibrated candidate moment matrix

M =
∑
R∈S

(
k
n

)|V(R)| q− p√
p(1− p)

|E(R)|MR

For technical convenience, we adjust the parameters β and γ slightly so that

n−β =
p

1− p
, n−γ =

q− p
1− p

This change does not formally affect the statement of Theorem 1.1.
For the purposes of analyzing the spectrum of M in later sections, it is more convenient

to rescale the entries so that Ẽ[XXI] has order 1 for all I ⊆ [n]. This will be the matrix Λ.

Definition 2.47 (λα). Given a shape or ribbon α, let

λα =

(
k
n

)|V(α)|−
|Uα |+|Vα |

2
 q− p√

p(1− p)

|E(α)|
= n(α−1)

(
|V(α)|− |Uα |+|Vα |2

)
+(
β
2−γ)|E(α)| .

Lemma 2.48. If R, S are properly composable ribbons, then λR◦S = λRλS.

Definition 2.49 (Λ). Define Λ =
∑

R∈S λRMR.

Lemma 2.50. M ⪰ 0 if and only if Λ ⪰ 0.

Proof. We have M = DΛD where D is a diagonal matrix with positive entries D[I, I] =(
k
n

) |I|
2 . Hence x⊺Mx ≥ 0 for all x ∈ RI if and only if x⊺Λx ≥ 0 for all x ∈ RI.

Lemma 2.51. M is SoS-symmetric and satisfies the constraints “XX2
i = XXi”.

Proposition 2.52. With high probability, we have Ẽ[1] = 1± o(1).

19

Proof (formal version in Appendix F).∣∣∣Ẽ[1] − 1
∣∣∣ = ∣∣∣ ∑

α∈S:
Uα=Vα=∅,

E(α),∅

λαMα
∣∣∣ ≤ ∑

α∈S:
Uα=Vα=∅,

E(α),∅

λα∥Mα∥

Up to a subpolynomial factor that is offset by edge decay, the norm bounds are (to be
computed later in Lemma 4.8),

λα∥Mα∥ ≲ n−(
1
2−α)w(α)−

w(S)
2 −(γ−αβ)|E(α)| .

With high probability over the random graph G ∼ Gn,p, all small subgraphs H have
w(H) ≥ 0 (up to a small error term). Therefore, a conditioning argument will get rid
of any small shape such with w(α) < 0 or w(S) < 0. The remaining shapes have both
w(α) ≥ 0 and w(S) ≥ 0. Since the parameters satisfy 1

2 −α ≥ 0 and γ−αβ > 0, the exponent
of n is negative and the entire sum is o(1).

Remark 2.53. Ẽ[1] = 1 ± o(1) fails with inverse polynomial probability. This is equivalent
to the observation that there is a low-degree distinguisher that succeeds with inverse polynomial
probability. Specifically, if we consider a constant-size subgraph which is unlikely to appear in
Gn,p (e.g. K10 when p is sufficiently small), the probability that the dense subgraph Gk,q contains
a copy of the subgraph is larger by a poly(n) factor. That said, even when Ẽ[1] ≫ 1, we can still
show that Λ ⪰ 0 with high probability. For details, see the appendix.

Proposition 2.54. With high probability,∣∣∣∣∣∣∣
n∑

i=1

Ẽ[XXi] − k

∣∣∣∣∣∣∣ = o(k),

and ∣∣∣∣∣∣∣∣
∑

{i, j}∈E(G)

Ẽ[XXiXX j] −
k2q
2

∣∣∣∣∣∣∣∣ = o(k2q)

Proof (formal version in Appendix F). For each i, Ẽ[XXi] = M[(i), ∅]. For most vertices i, the
dominant term in M[(i), ∅] is k

nMR[(i), ∅] where R is the ribbon such that V(R) = {i},
AR = (i), BR = ∅, and E(R) = ∅. MR[(i), ∅] = 1 so this gives a contribution of k

n . Summing
this over all i ∈ [n] gives k. In Appendix F, we verify that the contribution from the other
terms is o(k) with high probability.

For each i, j ∈ V(G) such that i < j, 1{i, j}∈E(G) Ẽ[XXiXX j] = 1{i, j}∈E(G)M[(i), (j)]. For most

i, j, the dominant term in 1{i, j}∈E(G)M[(i), (j)] is k2(q−p)

n2
√

p(1−p)
1{i, j}∈E(G)MR[(i), (j)] where R is

the ribbon such that V(R) = {i, j}, AR = (i), BR = (j), and E(R) = {{i, j}}.

20

1{i, j}∈E(G)MR[(i), (j)] =
√

1−p
p if {i, j} ∈ E(G) and 0 if {i, j} < E(G). Summing over all

i < j gives a total contribution of k2(q−p)
n2p |E(G)| ≈

k2q
2 . In Appendix F, we verify that the

contribution from the other terms is o(k2q) with high probability.

3 Positive Minimum Vertex Separator Decomposition

3.1 Motivation for the positive minimum vertex separator

After pseudocalibration, to complete the proof of Theorem 1.1, we need to show that the
rescaled candidate moment matrix is PSD with high probability,

Λ =
∑
α∈S

λα ·Mα ⪰ 0 .

For each graph matrix λαMα inΛ, we want to find an approximately-PSD term which
spectrally dominates it. Previous work led to the following idea: for each shape α, we
can split it across the leftmost and rightmost minimum vertex separators so that α is
decomposed into three parts,

α = σ ◦ τ ◦ σ′⊺ .

Then the target spectral upper bound is given by

λ2
σMσ◦σ⊺ + λ

2
σ′Mσ′◦σ′⊺ .

This is approximately PSD since Mσ◦σ⊺ ≈MσM
⊺
σ ⪰ 0. To make this strategy work, we need

to prove that the middle shape Mτ is spectrally dominated by the corresponding identity
via combinatorial charging. In previous work, it has been essentially possible to charge
all middle shapes to the identity matrix, but this breaks down in the setting of Densest
k-Subgraph. In the baby case, this is evident in our calculation for

∑
(u,v)∈E(G) Ẽ[XXuXXv] in

Proposition 2.54, where the dominant term is no longer the trivial shape but instead the
shape with an edge in between i and j.

A second, related issue is the presence of edges inside the separator. Concretely, say
that (Uτ, E(Uτ)) and (Vτ, E(Vτ)) are the leftmost/rightmost SMVS of a middle shape τ,
and we hope to charge τ to the diagonal matrix corresponding to the leftmost/rightmost
SMVS. Concretely, letting Uτ also denote the diagonal shape with edges E(Uτ), we want
to charge

λτ(Mτ + M⊺τ) ⪯ λUτMUτ + λVτMVτ .

However, this strategy crucially requires that λUτ ·MUτ and λVτ ·MVτ are PSD by
themselves in order to conclude that the result is PSD. Since λα is non-negative, this
boils down to the PSD-ness of the diagonal shape (Uτ, E(Uτ)) for the SMVS. This latter

21

matrix is easy to verify as the non-zero diagonal entries are given by, for a ribbon R of the
corresponding shape Uτ,

χE(R)(G) =
∏

e∈E(R)

χe(G)

and recall that we are working on the p-biased Fourier basis,

χe(1) =

√
1− p

p
, χe(0) = −

√
p

1− p

At this point, we observe that the instantiation of the SMVS edges E(R) plays a crucial
role as they determine whether our candidate ”PSD” mass is truly positive. If all edges of
E(R) are present in G, then the diagonal entry is positive,

∏
e∈E(R)

χe(G) =

√
1− p

p
|E(R)| ≥ 0 .

On the other hand, if an edge is missing, then positivity is not guaranteed. Ignoring this
bad case for now, we have the following sufficient criterion for finding a PSD dominant
term. If T is a ribbon of shape τ, and R is the restricted ribbon to Uτ, then if E(R) ⊆ E(G),
we must charge λτMT to λUτMR.

When an edge is missing inside the SMVS, then we need to look harder. Despite the
candidate PSD term not being truly positive, it is not yet time to panic. In this case, (1) a
missing edge scales down the matrix, in line with the intuition that subgraphs with edges
present are the highest-norm terms, therefore (2) we look in the remainder of the shape for
the new SMVS, to determine the new matrix norm. This creates a recursive process, and
when all edges inside the candidate SMVS are actually present in the graph, we terminate,
calling this the Positive Minimum-weight Vertex Separator (PMVS).

Let us give an example. The graph matrix at the top of Fig. 2 appears on the diagonal
of our moment matrix. In this example shape, the only vertex separator is the entire shape,
and so the SMVS contains the edge G(a, b). We check whether or not the edge appears
in the graph. In the “yes” outcome on the left, we have a PSD matrix whose (a, b)-th

diagonal entry is 1(a,b)∈E(G)

√
1−p

p . In the “no” outcome on the right, the (a, b)-th diagonal

entry is −1(a,b)<E(G)

√
p

1−p , which is negative and therefore the matrix is not PSD. This

matrix comes with a small coefficient of approximately
√

p and hence it can be charged to
the corresponding identity matrix, whose (a, b)-th diagonal entry is just 1. In this example,
the recursion terminates after just one step, but in larger shapes, we would need to find
the new SMVS for the case on the right.

It would have been cleaner if one can define the PMVS in “one shot”, rather than
through a recursion. As described above, the recursion outputs the minimizer of the

22

a

b

a

b

a

b

G(a,b) = ?

G(a, b) = −

√

√

√

√

p
1−pG(a, b) =

√

√

√

√

√

1−p
p

Figure 2: PMVS Search

weight function defined in Appendix B. However, we need to slightly modify the recursive
process described above so that it always “moves left”, in order for the crucial Remark 3.7
to hold.

3.2 PMVS subroutine

We make the following extended definition of the Positive Minimum Vertex Separator
(PMVS) of a ribbon R.

Definition 3.1 (Left and right indicators). We say that a ribbon R has left indicators if R has
edge indicators for every edge e ∈ E(AR). Similarly, we say that a ribbon R has right indicators
if R has edge indicators for every edge e ∈ E(BR).

Our goal is to have composable triples of ribbons R1, R2, R3 with the following prop-
erties:

Definition 3.2 (Ribbons with PMVS identified). A composable triple of ribbons R1, R2, R3 has
PMVS identified if:

(i) R1 is a left ribbon and R3 is a right ribbon.

(ii) R1, R2, R3 are properly composable.

(iii) R1 has right indicators, R2 has both left and right indicators, and R3 has left indicators.

(iv) The edges and edge indicators agree on BR1 = AR2 and BR2 = AR3 .

(v) R1, R2, R3 have no other edge indicators.

23

When these properties hold, we say that the left PMVS is AR2 and the right PMVS is BR2 .

Remark 3.3. The left and right PMVS may not have the same size or weight. In fact, they may
not even be an SMVS of R2. We will bound the difference between the PMVS and the SMVS in
Section 4.

At the beginning, we take each ribbon R and decompose it into ribbons R1, R2, R3 based
on the leftmost and rightmost SMVS using Proposition 2.33. This gives us a composable
triple of ribbons R1, R2, R3 such that

(i) R1 is a left ribbon, R2 is a middle ribbon, and R3 is a right ribbon.

(ii) R1, R2, R3 are properly composable.

(iv) The edges agree on BR1 = AR2 and BR2 = AR3 .

(v) R1, R2, and R3 have no edge indicators.

Remark 3.4. The ribbon encoded by the triple R1, R2, R3 is (R1 \ E(BR1)) ◦ R2 ◦ (R3 \ E(AR3))
rather than R1 ◦R2 ◦R3 because edges inside BR1 = AR2 should not be duplicated.

In order to satisfy the condition that R1 has right indicators, R2 has both left and right
indicators, and R3 has left indicators, we repeat the following sequence of operations as
many times as needed.

1. Adding left and right indicators operation: To add indicators to BR1 = AR2 and
BR2 = AR3 , we replace each edge e ∈ E(AR2) ∪ E(BR2) that does not yet have an

indicator using7 the equation χe =
1

1−p1e∈E(G)χe −
√

p
1−p . This leads to two possible

new ribbons which have different edge structure, one with e still present and the
other with e removed.

2. PMVS operation: After adding the edge indicators to BR1 = AR2 and BR2 = AR3 , we
check if R1 is still a left ribbon and R3 is still a right ribbon. If so, we stop and exit
the loop. If not, we let A′ be the leftmost SMVS separating AR1 from BR1 and we let
B′ be the rightmost SMVS separating AR3 from BR3 . We then replace R1, R2, and R3
with the ribbons R′1, R′2, and R′3 where

(a) R′1 is the part of R1 between AR1 and A′.

(b) R′2 is the composition of the part of R1 \E(BR1) between A′ and BR1 , R2, and the
part of R3 \ E(AR3) between AR3 and B′.

(c) R′3 is the part of R3 between B′ and BR3 .
7The high-level overview of the PMVS alluded to the slightly different formulaχe = 1e∈E(G)χe + 1e<E(G)χe.

These are morally equivalent, but the formula here is simpler to analyze.

24

3. Removing middle edge indicators operation: If R2 has one or more edge indica-
tors which are now outside of AR2 and BR2 , we re-convert them back into Fourier

characters using the equation 1
1−p1e∈E(G)χe =

√
p

1−p + χe.

We call this repeated sequence of operations the Finding PMVS subroutine, which
takes a triple of composable ribbons R1, R2, R3 which have all the needed properties except
having left and right indicators (some but not all indicators may be present) and gives us
a triple of composable ribbons with all of the needed properties.

Remark 3.5. Note that each triple R1, R2, R3 leads to many triples R′1, R′2, R′3 depending on which
summand is taken in each equation. The recursion proceeds on every term except for the one in
which every χe is replaced by 1

1−p1e∈E(G)χe.

Remark 3.6. At first glance, checking whether or not edges inside AR2 and BR2 are present leads to
a complicated dependence on the input graph G. In order to mathematically express the recursion
in a G-independent way, we formally use the edge indicator function to express the two cases.

3.3 Intersection term operation

Once we have these triples of ribbons R1, R2, R3, we can apply an approximate factorization
across the PMVS. When we do this, we will obtain error terms which can be described
by triples of ribbons R1, R2, and R3 which have at least one non-trivial intersection (they
are not properly composable) but satisfy the other four properties in Definition 3.2. We
handle this as follows.

1. Intersection term decomposition operation: Let A′ be the leftmost SMVS be-
tween AR1 and BR1 ∪ Vintersected(R1) and let B′ be the rightmost SMVS between
AR3 ∪ Vintersected(R3) and BR3 . We now replace R1, R2, and R3 with the ribbons
R′1, R′2, and R′3 where

(a) R′1 is the part of R1 between AR1 and A′.

(b) To obtain R′2, we improperly compose the part of R1 \ E(BR1) between A′ and
BR1 , R2, and the part of R3 \ E(AR3) between AR3 and B′. We then linearize the
multi-edges, replacing χk

e = c0 + c1χe using the appropriate coefficients c0, c1.

In the edge case that a multi-edge also has an edge indicator (for example,
because an each inside AR2 intersects with an edge from R3), we instead use the

equation 1eχk
e =

(√
1−p

p

)k−1
1eχe.

(c) R′3 is the part of R3 between B′ and BR3 .

2. We apply the Removing middle edge indicators operation to R2.

25

The ribbon R′2 is defined to “grow” R2 so that it includes the intersections. After these
steps, we are in essentially the same situation as we started. More precisely, we have a
triple of ribbons R1, R2, R3 such that

(i) R1 is a left ribbon and R3 is a right ribbon.

(ii) R1, R2, R3 are properly composable.

(iv) The edges and edge indicators agree on BR1 = AR2 and BR2 = AR1 .

(v) R1, R2, R3 have no edge indicators outside of BR1 = AR2 and BR2 = AR3 .

At this point, we can repeat the operations, applying the Finding PMVS subroutine
to identify a new PMVS, approximately factoring, then decomposing intersection terms,
as many times as needed.

3.4 Summary of the operations and overall decomposition

We now summarize our procedure.
Finding PMVS subroutine: repeat the following until convergence,

1. Apply the Adding left and right indicators operation to add indicators to BR1 = AR2

and BR2 = AR3 .

2. Apply the PMVS operation to ensure that R1 is a left ribbon and R3 is a right ribbon.
If no change is made to R1 or R3, then we have identified the PMVS.

3. Apply the Removing middle edge indicators operation to R2 to ensure that R2 has
no middle indicators.

Overall decomposition procedure:

1. We start with triples of composable ribbons R1, R2, R3 which have all the needed
properties except having left and right indicators.

2. We apply the Finding PMVS subroutine.

3. Recursive factorization: We apply the following procedure repeatedly until there
are no more error terms.

1. We approximate the sum over the composable triples of ribbons R1, R2, R3 by
enlarging the sum to include all left ribbons R1 and right ribbons R3 (not nec-
essarily properly composable with R2 or with each other). This yields a matrix
LQiL⊺ where L sums over left ribbons and Qi sums over the ribbons R2 on the

26

ith iteration of the loop. We then move to the triples of ribbons R1, R2, R3 for the
intersection error terms, if any.8 9

2. We apply the Intersection term decomposition operation to obtain a triple of
ribbons R1, R2, R3 which are properly composable.

3. We apply the Removing middle edge indicators operation to R2 to ensure that
R2 has no middle indicators.

4. We apply the Finding PMVS subroutine.

Remark 3.7. As with previous SoS lower bounds using graph matrices, a key observation is that
the PMVS operation and the intersection term decomposition operation are unaffected by replacing
R′1 with a different left ribbon R′′1 or replacing R′3 with a different right ribbon R′′3 as long as
BR′′1

= BR′1
= AR′2

and AR′′3
= AR′3

= BR′2
. This ensures that all left ribbons R′1 and right ribbons

R′3 appear in the matrices L and L⊺.

Carrying out this process, the overall decomposition of the moment matrix is then

Λ = L

 DV∑
i=0

Qi

 L⊺ ± truncation error .

Therefore, the main requirement for Λ ⪰ 0 is to show that
∑DV

i=0 Qi ⪰ 0. We will show
that the norm-dominant terms are the diagonal shapes (Definition 2.16). By virtue of the
PMVS factorization, these shapes are PSD, as we can easily check.

Lemma 3.8. If R1, R2, R3 are ribbons with PMVS identified, such that R2 is diagonal, then
λR2MR2 ⪰ 0.

Proof. λR2 ≥ 0 and R2 is diagonal with one nonzero entry, so we need that the entry is
nonnegative. Since R2 has edge indicators, the entry is∏

e∈E(R2)

1e∈E(G)χe(G) .

Any time the entry is nonzero, its value is χ(1)|E(R2)| =
(√

1−p
p

)|E(R2)|

≥ 0.

In the next section, we will prove that the norm of any individual term in the Qi is small
relative to these PSD terms, which is the key remaining component of the PSDness proof.
Summing over all the terms and bounding the truncation error is done in Appendix E.

8There are also additional error terms for the truncation error, as the maximum size of the left ribbons
R1, R3 will be slightly smaller for intersection terms. This must be handled separately.

9We enlarge the sum to include only ribbons R1 such that BR1 = AR2 and R3 such that AR3 = BR2 . For
this reason, the matrix L is slightly more restricted than including all left ribbons.

27

So far, we have described how the ribbons are manipulated. Each ribbon also comes
with a coefficient that we need to track. Initially, the coefficient of every ribbon R is λR.
Since the coefficients satisfy λR◦S = λRλS (Lemma 2.48), we may factor λR whenever we
factor the ribbon. Doing so, the left and right ribbons R1 and R3 always come with the
factors λR1 and λR3 .

The coefficient on R2 is initially λR2 , but it accrues extra factors in some steps of the
process.

Definition 3.9 (cR). Given ribbons R1, R2, R3 which produce ribbons R′1, R′2, R′3 let cR′2
be such

that the final coefficient is cR′2
λR′1
λR′2
λR′3

. Note that cR′2
does not depend on R′1 or R′3, but it does

depend on the cases in the decomposition process.

For example, during the Adding left and right indicators operation, cR′2
accrues

a factor of 1
1−p for each edge indicator or a factor −

√
p

1−p if an edge is removed. It
changes in the same way during the Removing middle edge indicators operation. It
will also be multiplied by the excess edge and vertex factors during the Intersection term
decomposition operation, as well as the linearization coefficient either c0 or c1.

4 Combinatorial Norm Charging Arguments

Now that we have identified the dominant PSD terms, we analyze the norms of the non-
dominant terms that appear during the decomposition process in Section 3.4 and show
that they are small.

Each graph matrix making up Λ has norm poly(n) times additional log factors. It is
most important to perform the proof at the coarse level of poly(n), ignoring the log factors
and other relatively small10 combinatorial factors such as poly(DSoS). In this section, we
will work at the coarse level by defining away all of the subpolynomial factors in order to
focus on the key combinatorial arguments. Only the first subsection will involve n, and
the remaining subsections will be pure combinatorics on shapes. The lower-order factors
will be formally incorporated in Appendix E.

4.1 Setup

In this section we will use the parameterization α, β,γ instead of k, p, q.

Remark 4.1. Take note that there is a notation clash between the size of the dense subgraph
α ∈ (0, 1/2) and a generic shape α, and also between the edge density of the planted subgraph
γ ∈ (0, 1) and a left shape γ which participates in an intersection. It should be clear from context
whether the symbol refers to a shape or a real number.

10In order to study the regime where the random graph has subpolynomial average degree, or improve
the SoS degree above nδ, we would need to carefully track log factors and DSoS respectively.

28

Let τ be the shape of a ribbon R2 that appears in a matrix Qi in Section 3.4. The
contribution of this term to Qi is cτλτMτ. We wish to show that when τ is not a diagonal
shape, this expression has small norm.

Recall that the pseudocalibrated coefficients are

λτ = n(α−1)
(
|V(τ)|− |Uτ |+|Vτ |2

)
+(
β
2−γ)|E(τ)| .

Recall the weight function w(S) = |S| − β · |E(S)|.

Definition 4.2 (Approximate norm bound). Given a shape α (possibly improper), let:∥∥∥M≈α
∥∥∥ = n

|V(α)|−w(Smin)+| Iso(α)|
2 .

It would be more proper to write ∥Mα∥≈ although we use this version for more compact
notation.

Definition 4.3 (Approximate coefficient change, informal). Given a shape τ, let c≈τ = |cτ|
when ignoring subpolynomial factors.

For the shape τ, we view Uτ and Vτ also as diagonal shapes which include only edges
with both endpoints inside Uτ or Vτ. We want to bound cτλτMτ using the diagonal shapes
λUτMUτ and λVτMVτ . In order to do this, we need to have that

c≈τλτ
∥∥∥M≈τ

∥∥∥ ≤ √
λUτλVτ

∥∥∥∥M≈Uτ

∥∥∥∥ ∥∥∥∥M≈Vτ

∥∥∥∥ .

It turns out that this inequality will hold with a poly(n) factor of slack, which furthermore
increases for larger shapes τ. We will use this extra slack to control the subpolynomial
factors in the formal analysis. To keep track of this extra slack, we define the following
slack parameter.

Definition 4.4 (Slack). Given a shape τ with a coefficient cτ, we define slack(τ) so that

c≈τλτ
∥∥∥M≈τ

∥∥∥ = n− slack(τ)

√
λUτλVτ

∥∥∥∥M≈

Uτ

∥∥∥∥ ∥∥∥∥M≈Vτ

∥∥∥∥.

By construction, slack(τ) is a combinatorial quantity that does not depend on n. It is
crucial to prove that slack(τ) ≥ 0, and in the remaining subsections, we will prove the
following positive lower bound on slack(τ), by proving combinatorially that the slack
increases during each operation of the recursion.

Definition 4.5 (Vtot(τ) and Etot(τ)). During the recursion, some vertices and edges are lost
during intersections, or when adding or removing indicators. Given a shape τ of a ribbon during
the recursion, let Vtot(τ) be the vertex set without performing the intersections. Let Etot(τ) be the
enlargement of E(τ) to include all of the removed edges.

29

Remark 4.6. Identify (Uτ, Vτ, Vtot(τ), Etot(τ)) with the shape γ j ◦ · · · ◦ γ1 ◦ τ0 ◦ γ
′⊺
1 ◦ · · · ◦ γ

′⊺
j

where τ0 is the “initial” middle shape, j is the level of the recursion, and γi,γ
′⊺
i will be described

in the following sections.

Theorem 4.7. (Slack lower bound). At all times in the decomposition procedure described in
Section 3.4, letting τ be the shape of R2,

slack(τ) ≥ ε
(
|Etot(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

+ |Vtot(τ)| −
|Uτ|+ |Vτ|

2

)
where ε = min

{
1− α, γ−αβ8

}
.

We develop a combinatorial formula for the slack in the next few lemmas.

Lemma 4.8. For any shape τ, if S is an SMVS of τ then

λτ
∥∥∥M≈τ

∥∥∥ = n(1−α)
(
|Uτ |+|Vτ |

2

)
−(1

2−α)w(τ)−
w(S)

2 +
| Iso(τ)|

2 −(γ−αβ)|E(τ)|

Proof.

λτ
∥∥∥M≈τ

∥∥∥ = n(α−1)
(
|V(τ)|− |Uτ |+|Vτ |2

)
+(
β
2−γ)|E(τ)|n

|V(τ)|−w(S)+| Iso(τ)|
2

= n(1−α)
(
|Uτ |+|Vτ |

2

)
−(1

2−α)|V(τ)|+(1
2−α)β|E(τ)|−(γ−αβ)|E(τ)|−

w(S)
2 +

| Iso(τ)|
2

= n(1−α)
(
|Uτ |+|Vτ |

2

)
−(1

2−α)w(τ)−(γ−αβ)|E(τ)|−w(S)
2 +

| Iso(τ)|
2

Lemma 4.9. For any shape τ, if S is an SMVS of τ then

λτ
∥∥∥M≈τ

∥∥∥√
λUτλVτ

∥∥∥∥M≈Uτ

∥∥∥∥ ∥∥∥∥M≈Vτ

∥∥∥∥
=n
−(1

2−α)
(
w(τ)−

w(Uτ)+w(Vτ)
2

)
−(γ−αβ)

(
|E(τ)|− |E(Uτ)|+|E(Vτ)|2

)
+ 1

2

(
w(Uτ)+w(Vτ)

2 −w(S)
)
+
| Iso(τ)|

2 .

Proof. For the diagonal shapes Uτ and Vτ, we have

λUτ

∥∥∥M≈

Uτ

∥∥∥ = n(
β
2−γ)|E(Uτ)|n

β
2 |E(Uτ)| = n(β−γ)|E(Uτ)|

λVτ

∥∥∥M≈

Vτ

∥∥∥ = n(
β
2−γ)|E(Vτ)|n

β
2 |E(Vτ)| = n(β−γ)|E(Vτ)| .

Therefore, √
λUτλVτ

∥∥∥∥M≈Uτ

∥∥∥∥ ∥∥∥∥M≈Vτ

∥∥∥∥ = n
(β−γ)

(
|E(Uτ)|+|E(Vτ)|

2

)
.

30

Multiplying with Lemma 4.8,

λτ
∥∥∥M≈τ

∥∥∥√
λUτλVτ

∥∥∥∥M≈Uτ

∥∥∥∥ ∥∥∥∥M≈Vτ

∥∥∥∥
=n

(1−α)
(
|Uτ |+|Vτ |

2

)
−(1

2−α)w(τ)−
w(S)

2 +
| Iso(τ)|

2 −(γ−αβ)|E(τ)|−(β−γ)
(
|E(Uτ)|+|E(Vτ)|

2

)

=n
(1−α)

(
|Uτ |+|Vτ |

2

)
−(1

2−α)w(τ)−
w(S)

2 +
| Iso(τ)|

2 −(γ−αβ)|E(τ)|−(αβ−γ)
(
|E(Uτ)|+|E(Vτ)|

2

)
+(αβ−β)

(
|E(Uτ)|+|E(Vτ)|

2

)

=n
(1−α)

(
w(Uτ)+w(Vτ)

2

)
−(1

2−α)w(τ)−
w(S)

2 +
| Iso(τ)|

2 −(γ−αβ)
(
|E(τ)|− |E(Uτ)|+|E(Vτ)|2

)

=n
−(1

2−α)
(
w(τ)−

w(Uτ)+w(Vτ)
2

)
−(γ−αβ)

(
|E(τ)|− |E(Uτ)|+|E(Vτ)|2

)
+ 1

2

(
w(Uτ)+w(Vτ)

2 −w(S)
)
+
| Iso(τ)|

2 .

As a corollary, we have the following combinatorial formula for the slack.

Lemma 4.10.

slack(τ) =

(
1
2
− α)

(
w(τ) −

w(Uτ) + w(Vτ)
2

)
+ (γ− αβ)

(
|E(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

)
−

1
2

(
w(Uτ) + w(Vτ)

2
−w(S)

)
−
| Iso(τ)|

2
− logn(c

≈
τ)

4.2 Slack for middle shapes

We start by computing the slack for middle shapes. This is the slack at the start of the
process.

Theorem 4.11. Let τ be a proper middle shape. Then:

slack(τ) ≥ (γ− αβ)

(
|E(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

)
Proof. Since τ is a proper middle shape, | Iso(τ)| = 0 and cτ = 1. By Lemma 4.10 we have

slack(τ) = (
1
2
− α)

(
w(τ) −

w(Uτ) + w(Vτ)
2

)
+ (γ− αβ)

(
|E(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

)
−

1
2

(
w(Uτ) + w(Vτ)

2
−w(S)

)
.

31

Furthermore, since w(τ) ≥ w(S) = w(Uτ) = w(Vτ), the last term is 0, and the first term is
non-negative. Thus,

slack(τ) ≥ (γ− αβ)

(
|E(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

)
.

4.3 Slack for the PMVS subroutine

For this subsection, suppose that one iteration of the Finding PMVS subroutine replaces
ribbon R2 of shape τ by ribbon R′2 of shape τ′.

We will need to consider the “removed edges” E(R2) \ E(R′2), which intuitively are
the edges of the ribbon that were queried and not present, and formally are the edges that
disappear during either the Adding left and right indicators operation or the Removing
middle edge indicators operation. Observe that all removed edges are in Uτ ∪Vτ.

Recall that in the PMVS operation, we take a triple of ribbons R1, R2, R3 after indicators
have been added, and split R1 across the leftmost SMVS A′ between AR1 and BR1 , and
likewise split R3 across the rightmost SMVS B′ between AR3 and BR3 .

Definition 4.12 (γ and γ′). Let γ be the shape of the part of R1 between A′ and BR1 . Let γ′⊺ be
the shape of the part of R3 between AR3 and B′.

Remark 4.13. Note that γ, τ, and γ′⊺ should include all removed edges, whereas τ′ has the edges
removed.

Remark 4.14. While thisγ is technically different than theγ for an intersection term in Section 4.4,
it plays a similar role.

Lemma 4.15. γ,γ′ are left shapes.

Proof. Suppose that S is a separator of γ. We claim that S is also a separator of R1. Let P
be any path from AR1 to BR1 . Since A′ = Uγ is a separator for R1, P must pass through
A′. Starting from the final vertex of the path in A′ gives a path from A′ = Uγ to BR1 = Vγ
which is entirely contained in γ. Finally, since S is a separator of γ, it must contain a vertex
of the path P, and thus S cuts the path P.

Since R1 is a left ribbon, we conclude that w(S) ≥ w(Vγ) and the unique SMVS of γ is
Vγ.

Theorem 4.16. Let R2 → R′2 be a ribbon that undergoes one iteration of the Finding PMVS
subroutine. Let τ and τ′ be their respective shapes. Then

slack(τ′) − slack(τ)

32

≥ α

(
w(Uτ′) + w(Vτ′) −w(Uτ) −w(Vτ)

2

)
+ (γ− αβ)

(
|E(τ′)| −

|E(Uτ′)|+ |E(Vτ′)|
2

− |E(τ)|+
|E(Uτ)|+ |E(Vτ)|

2

)
+ (γ− αβ)x

where x is the total number of removed edges.

Proof. By Lemma 4.10,

slack(τ′) − slack(τ)

= (
1
2
− α)

(
w(τ′) −

w(Uτ′) + w(Vτ′)
2

−w(τ) +
w(Uτ) + w(Vτ)

2

)
+ (γ− αβ)

(
|E(τ′)| −

|E(Uτ′)|+ |E(Vτ′)|
2

− |E(τ)|+
|E(Uτ)|+ |E(Vτ)|

2

)
−

1
2

(
w(Uτ′) + w(Vτ′)

2
−w(S′) −

w(Uτ) + w(Vτ)
2

+ w(S)
)

−
| Iso(τ′)| − | Iso(τ)|

2
− logn(c

≈

τ′) + logn(c
≈
τ)

= (
1
2
− α) (w(τ′) −w(τ)) + α

(
w(Uτ′) + w(Vτ′) −w(Uτ) −w(Vτ)

2

)
+

w(Uτ) + w(Vτ) −w(Uτ′) −w(Vτ′) + w(S′) −w(S) + | Iso(τ)| − | Iso(τ′)|
2

+ (γ− αβ)

(
|E(τ′)| −

|E(Uτ′)|+ |E(Vτ′)|
2

− |E(τ)|+
|E(Uτ)|+ |E(Vτ)|

2

)
− logn

(
c≈
τ′

c≈τ

)
The large term multiplied by 1

2 is the most dangerous term as it does not come with any
small coefficient. We analyze the terms as follows.

Claim 4.17.
c≈
τ′

c≈τ
= n−γx

Proof of Claim 4.17. As noted after Definition 3.9, for each edge which is removed, we get

a factor of magnitude n−
β
2 . Furthermore, we get a factor of n

β
2−γ shifted from λτ to cτ′ .

Multiplying these factors together gives a factor of magnitude n−γ per removed edge.

Claim 4.18. w(τ′) ≥ w(τ) + βx

Proof of Claim 4.18. Observe that

w(τ′) = w(γ) + w(τ) + w(γ′⊺) −w(Uτ) −w(Vτ) + βx .

Uτ = Vγ is an SMVS for γ so w(γ) ≥ w(Uτ). Similarly, w(γ′) ≥ w(Vτ). Putting these
equations together, we have that w(τ′) ≥ w(τ) + βx, as needed.

33

The next lemma is a tradeoff lemma for the PMVS, which will be proven in the next
sub-subsection.

Lemma 4.19 (PMVS tradeoff lemma).

w(Uτ′) + w(Vτ′) −w(S′) + | Iso(τ′)| ≤ w(Uτ) + w(Vτ) −w(S) + | Iso(τ)|+ βx

Multiplying Claim 4.18 by 1
2 − α and multiplying Lemma 4.19 by 1

2 , we have that

1. (1
2 − α)(w(τ′) −w(τ)) ≥

β
2x− αβx

2.

w(Uτ) + w(Vτ) −w(Uτ′) −w(Vτ′) + w(S′) −w(S) + | Iso(τ)| − | Iso(τ′)|
2

≥ −
β

2
x

Using these equations in the formula above, we have that

slack(τ′) − slack(τ)

≥
β

2
x− αβx + α

(
w(Uτ′) + w(Vτ′) −w(Uτ) −w(Vτ)

2

)
−
β

2
x

+ (γ− αβ)

(
|E(τ′)| −

|E(Uτ′)|+ |E(Vτ′)|
2

− |E(τ)|+
|E(Uτ)|+ |E(Vτ)|

2

)
+ γx

= (γ− αβ)x + α
(

w(Uτ′) + w(Vτ′) −w(Uτ) −w(Vτ)
2

)
+ (γ− αβ)

(
|E(τ′)| −

|E(Uτ′)|+ |E(Vτ′)|
2

− |E(τ)|+
|E(Uτ)|+ |E(Vτ)|

2

)
as needed.

Corollary 4.20.

slack(τ′) − slack(τ)

≥ (γ− αβ) ·

(
|Etot(τ

′)| −
|E(Uτ′)|+ |E(Vτ′)|

2
− |Etot(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
Proof. Using our slack calculation above, observe that we can remove the vertex factor as

α

(
w(Uτ′) + w(Vτ′) −w(Uτ) −w(Vτ)

2

)
≥ 0

since Uτ′ (including the removed edges) is a larger separator than Uτ, as Uτ is the SMVS
of R1 at this point in the iteration (and likewise for Vτ′ and Vτ). Removing edges only
increases w(Uτ′).

34

4.3.1 Proof of the PMVS tradeoff lemma

Lemma 4.19 (PMVS tradeoff lemma).

w(Uτ′) + w(Vτ′) −w(S′) + | Iso(τ′)| ≤ w(Uτ) + w(Vτ) −w(S) + | Iso(τ)|+ βx

Proof. To prove this, we construct and analyze the following sets of vertices.

1. We take X0 to be the set of vertices in Vγ \ S′ which can be reached in γ from Uγ
without passing through a vertex in S′. We then take X = X0 ∪ (S′ ∩V(γ)).

2. We take Yl to be the set of non-isolated vertices in Vγ \ S′ which are not reachable
in γ from Uγ without passing through S′. Similarly, we take Yr to be the set of
non-isolated vertices in Uγ′⊺ \ S′ which are not reachable in γ′⊺ from Vγ′⊺ without
passing through a vertex in S′. We then take Y = Yl ∪Yr ∪ (S′ ∩V(τ))∪ (Vγ ∩Uγ′⊺).

3. We take Z0 to be the set of vertices in Uγ′⊺ \ S′ which can be reached in γ′⊺ from Vγ′⊺
without passing through a vertex in S′. We take Zextra to be the set of non-isolated
vertices in (Uτ ∩ Vτ) \ S′ which are not reachable from Vγ′⊺ in γ′⊺. We then take
Z = Z0 ∪Zextra ∪ (S′ ∩V(γ′⊺)).

Let x∩ be the number of edges removed from Uτ ∩Vτ. We now observe that it is sufficient
to show the following statements.

1. w(X) ≥ w(Uγ), w(Y) ≥ w(S) + βx∩, and w(Z) ≥ w(Vγ′⊺).

2.

w(X) + w(Y) + w(Z) ≤ w(S′) + w(Vγ) + w(Uγ′⊺) − (| Iso(τ′)| − | Iso(τ)|)
= w(S′)
+ w(Uτ) + β(# of edges removed from Uτ)
+ w(Vτ) + β(# of edges removed from Vτ)
− (| Iso(τ′)| − | Iso(τ)|)

Using the three initial inequalities on the left-hand side of the second statement,

w(Uγ) + w(S) + βx∩ + w(Vγ′⊺) ≤ w(S′) + w(Uτ) + w(Vτ)

+ βx + βx∩ −
∣∣∣Iso(τ′)

∣∣∣+ | Iso(τ)| .

Rearranging this, we have

w(Uτ′) + w(Vτ′) −w(S′) + | Iso(τ′)| ≤ w(Uτ) + w(Vτ) −w(S) + | Iso(τ)|+ βx

as needed.

35

Moving to the statements, to show that w(X) ≥ w(Uγ) and w(Z) ≥ w(Vγ′⊺), we
observe that because of how we chose X and Z, X is a vertex separator of γ and Z is a
vertex separator of γ′⊺.

To show that w(Y) ≥ w(S) + βx∩, we first observe that Y is a vertex separator of τ
(with or without the missing edges). To see this, assume that Y is not a vertex separator of
τ. If so, there is a path Pm from a vertex u ∈ Uτ to a vertex v ∈ Vτ which does not intersect
Y and thus does not intersect S′. Since u < Y, there is a path Pl from Uγ to u in γ which
does not intersect S′. Similarly, since v < Y, there is a path Pr from v to Vγ′⊺ in γ′⊺ which
does not intersect S′. Composing Pl, Pm, and Pr gives a path from Uτ′ to Vτ′ which does
not intersect S′ which is a contradiction as S′ is an SMVS for τ′.

We now observe that when the missing edges are removed, all vertex separators of τ
have their weight increased by at least βx∩. Thus, after the missing edges are deleted, all
vertex separators of τ have weight at least w(S) + βx∩ so w(Y) ≥ w(S) + βx∩.

To show that

w(X) + w(Y) + w(Z) ≤ w(S′) + w(Vγ) + w(Uγ′⊺) − (| Iso(τ′)| − | Iso(τ)|)

we show the following two statements:

1. For each vertex v, 1v∈X + 1v∈Y + 1v∈Z ≤ 1v∈S′ + 1v∈Vγ + 1v∈Uγ′⊺ − 1v∈Iso(τ′)\Iso(τ).

2. For each edge e, 1e∈E(X) + 1e∈E(Y) + 1e∈E(Z) ≥ 1e∈E(S′) + 1e∈E(Vγ) + 1e∈E(Uγ′⊺).

For the first statement, we make the following observations:

1. If v ∈ S′ then v is not isolated. If v < Vγ ∪Uγ′⊺ then v is in exactly one of X, Y, and
Z depending on whether v is in V(γ), V(τ), or V(γ′⊺). If v ∈ Vγ ∪Uγ′⊺ then v ∈ Y,
v ∈ X if and only if v ∈ Vγ and v ∈ Z if and only if v ∈ Uγ′⊺ .

2. If v ∈ Iso(τ′) \ Iso(τ) then v < X and v < Z. Moreover, v must be in Vγ or Uγ′⊺ and
v ∈ Y if and only if v is in both Vγ and Uγ′⊺ .

3. If v ∈ (Vγ \S′) \Uγ′⊺ and v is not isolated then 1v∈S′ + 1v∈Vγ + 1v∈Uγ′⊺ − 1v is isolated = 1
and 1v∈X + 1v∈Y + 1v∈Z = 1 as v < Z and either v ∈ X or v ∈ Y but not both.

4. If v ∈ (Uγ′⊺ \S′) \Vγ and v is not isolated then 1v∈S′ + 1v∈Vγ + 1v∈Uγ′⊺ − 1v is isolated = 1
and 1v∈X + 1v∈Y + 1v∈Z = 1 as v < X and either v ∈ Y or v ∈ Z but not both.

5. If v ∈ (Vγ∩Uγ′⊺) \S′ and v is not isolated then 1v∈S′+ 1v∈Vγ+ 1v∈Uγ′⊺ −1v is isolated = 2
and 1v∈X + 1v∈Y + 1v∈Z = 2 as v ∈ Y and either v ∈ X or v ∈ Z but not both.

For the second statement, we make the following observations:

36

1. If e ∈ E(S′) and e < E(Vγ) ∪ E(Uγ′⊺) then e is in exactly one of E(X), E(Y), and E(Z)
depending on whether e is in E(γ), E(τ), or E(γ′⊺). If e ∈ E(Vγ) ∪ E(Uγ′⊺) then
e ∈ E(Y), e ∈ E(X) if and only if e ∈ E(Vγ), and e ∈ E(Z) if and only if e ∈ E(Uγ′⊺). In
all of these cases, 1e∈E(X) + 1e∈E(Y) + 1e∈E(Z) ≥ 1e∈E(S′) + 1e∈E(Vγ) + 1e∈E(Uγ′⊺).

2. If e ∈ (E(Vγ) \ E(S′)) \ E(Uγ′⊺) then 1e∈E(S′) + 1e∈E(Vγ) + 1e∈E(Uγ′⊺) = 1 and 1e∈E(X) +

1e∈E(Y) + 1e∈E(Z) = 1 as e < E(Z) and either e ∈ E(X) or e ∈ E(Y) but not both.

3. If e ∈ (E(Uγ′⊺) \ E(S′)) \ E(Vγ) then 1e∈E(S′) + 1e∈E(Vγ) + 1e∈E(Uγ′⊺) = 1 and 1e∈E(X) +

1e∈E(Y) + 1e∈E(Z) = 1 as e < E(X) and either e ∈ E(Y) or e ∈ E(Z) but not both.

4. If e ∈ (E(Vγ)∩ E(Uγ′⊺)) \ E(S′) then 1e∈E(S′) + 1e∈E(Vγ) + 1e∈E(Uγ′⊺) = 2 and 1e∈E(X) +

1e∈E(Y) + 1e∈E(Z) = 2 as e ∈ E(Z) and either e ∈ E(X) or e ∈ E(Z) but not both.

4.4 Slack for intersection terms

We now analyze the slack for the Intersection term decomposition operation. The anal-
ysis is similar to that for the PMVS subroutine, albeit with additional considerations.

Suppose that the operation replaces a ribbon R2 of shape τ by a ribbon R′2 of shape
τP. Recall that in the Intersection term decomposition operation, we take a triple of
ribbons R1, R2, R3 with intersections, and split R1 across the leftmost SMVS A′ between
AR1 and BR1 ∪Vintersected(R1), and likewise split R3 across the rightmost SMVS B′ between
AR3 ∪Vintersected(R3) and BR3 .

Definition 4.21 (γ and γ′). Let γ be the shape of the part of R1 between A′ and BR1 . Let γ′⊺ be
the shape of the part of R3 between AR3 and B′.

The notation τP is used because τP is an intersection shape (Definition 2.37) for some
intersection pattern P ∈ Pγ,τ,γ′⊺ (after linearization).

The edges that are linearized away into a constant term during the Intersection term
decomposition operation are referred to as “vanishing edges”.

Theorem 4.22. Let R2 → R′2 be a ribbon that undergoes the Intersection term decomposition
operation. Let τ and τP be their respective shapes. Then for γ,γ′ as defined in Definition 4.21,

slack(τP) − slack(τ) ≥

(1− α)
(

w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ)
2

)
+ (γ− αβ)

(
|E(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
+ (γ− αβ) · edgereduction

37

where edgereduction is the total number of vanishing edges.

Proof. By Lemma 4.10,

slack(τP) − slack(τ)

= (
1
2
− α)

(
w(τP) −

w(UτP) + w(VτP)

2
−w(τ) +

w(Uτ) + w(Vτ)
2

)
+ (γ− αβ)

(
|E(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
−

1
2

(
w(UτP) + w(VτP)

2
−w(S′) −

w(Uτ) + w(Vτ)
2

+ w(S)
)

−
| Iso(τP)| − | Iso(τ)|

2
− logn(c

≈
τP
) + logn(c

≈
τ)

= (
1
2
− α) (w(τP) −w(τ)) −

1− α
2

(
w(UτP) + w(VτP) −w(Uγ) −w(Vγ′⊺)

)
+ α

(
w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ)

2

)
+

w(Uτ) + w(Vτ) −w(Uγ) −w(Vγ′⊺) + w(S′) −w(S) + | Iso(τ)| − | Iso(τP)|

2

+ (γ− αβ)

(
|E(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
− logn

(
c≈τP
c≈τ

)
We now analyze the different terms that appear.

Claim 4.23.

c≈τP

c≈τ
= n(α−1)·(# of intersections)

 ∏
e∈Etot(τP)

(
n
β
2−γ

)mult(e)−1+1e vanishes
(
n
β
2

)mult(e)−1−1e vanishes

Note that we consider the iteration e ∈ Etot(τP) to yield each multiedge only once.

Proof of Claim 4.23. Observe that for each intersection, we have one fewer vertex factor of
n(α−1) in λτP so we need to add this factor to cτP . For each multiedge in Etot(τP), we have

mult(e)− 1+ 1e vanishes fewer factors of n
β
2−γ in λτP so these factors need to be added to cτP .

Finally, for each multiedge in e ∈ Etot(τP), when we express it as a linear combination of

1 and χ{e}, we gain mult(e)− 1− 1e vanishes factors of n
β
2 (Proposition 2.43) which also need

to be added to cτP . When a multiedge with an indicator is linearized, it never vanishes,
and the coefficient is the same as linearizing a multiedge without an indicator.

38

For notational convenience, we define the following expressions:

linearization =
∑

e∈Etot(τP)

mult(e) − 1− 1e vanishes .

edgereduction =
∑

e∈Etot(τP)

mult(e) − 1 + 1e vanishes

With these expressions, we can express logn

(
c≈τP
c≈τ

)
as follows.

Corollary 4.24.

logn

(
c≈τP
c≈τ

)
= (α− 1) · (# of intersections) + (

β

2
− γ)(edgereduction) +

β

2
(linearization)

Claim 4.25.

w(τP) ≥ w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ) + w(τ)

− (# of intersections) + β(edgereduction)

Proof of Claim 4.25. We first observe that

w(τP) = w(γ) + w(τ) + w(γ′⊺) −w(Uτ) −w(Vτ)
− (# of intersections) + β(edgereduction) .

To see this, note that if there were no intersections then we would have that w(τP) =
w(γ) + w(τ) + w(γ′⊺)−w(Uτ)−w(Vτ). Each intersection reduces the number of vertices
and thus decreases the weight of τP by 1. The change in the number of edges increases
the weight of τP by β(edgereduction).

We now observe that w(γ) ≥ w(Uγ) as otherwise γwould be a separator in γ between
Uγ and Vγ ∪Vintersected(γ) with smaller weight than Uγ. Following similar logic, w(γ′) ≥
w(Vγ′⊺). Thus, we have that

w(τP) ≥ w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ) + w(τ)

− (# of intersections) + β(edgereduction)

as needed.

The next lemma is an intersection tradeoff lemma to be proven in the next sub-section.

Lemma 4.26 (Intersection tradeoff lemma). Given is a shape τ, left shapes γ,γ′, an intersection
pattern P ∈ Pγ−,τ,(γ′⊺)− such that the following structural property holds:

39

Uγ is the leftmost SMVS of Uγ and Vγ ∪ Vintersected(γ), and Vγ′⊺ is the rightmost
SMVS of Uγ′⊺ ∪Vintersected(γ

′⊺) and Vγ′⊺ .

Let S be an SMVS of τ, let τP be the shape resulting from P followed by linearization, and let S′ be
an SMVS of τP. Then,

w(Uγ) + w(Vγ′⊺) −w(S′) + | Iso(τP)| ≤ w(Uτ) + w(Vτ) −w(S) + | Iso(τ)|
+ (# of intersections) − β (linearization)
− β(# of vanishing edges in Uγ)
− β(# of vanishing edges in Vγ′⊺)

Multiplying Claim 4.25 by 1
2 − α and multiplying Lemma 4.26 by 1

2 , we have that

1.

(
1
2
− α) (w(τP) −w(τ)) ≥

(
1
2
− α)

(
w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ) − (# of intersections)

)
+ (

1
2
− α)β(edgereduction)

2.

w(Uτ) + w(Vτ) −w(UτP) −w(VτP) + w(S′) −w(S) + | Iso(τ)| − | Iso(τP)|

2

≥
−1
2
(# of intersections) +

β

2
(linearization)

+
β

2
((# of vanishing edges in Uγ) + (# of vanishing edges in Vγ′⊺))

Using these equations in the formula above, we have that

slack(τP) − slack(τ)

≥ (
1
2
− α)

(
w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ) − (# of intersections)

)
+ (

1
2
− α)β (edgereduction) −

1− α
2

(
w(UτP) + w(VτP) −w(Uγ) −w(Vγ′⊺)

)
+ α

(
w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ)

2

)
+
β

2
(linearization) −

1
2
(# of intersections)

+
β

2
((# of vanishing edges in Uγ) + (# of vanishing edges in Vγ′⊺))

40

+ (γ− αβ)

(
|E(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
− (α− 1)(# of intersections) −

β

2
(linearization)

− (
β

2
− γ)(edgereduction)

=
1− α

2

(
w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ)

)
−

1− α
2

(
w(UτP) + w(VτP) −w(Uγ) −w(Vγ′⊺)

)
+ (γ− αβ) (edgereduction)

+
β

2
((# of vanishing edges in Uγ) + (# of vanishing edges in Vγ′⊺))

+ (γ− αβ)

(
|E(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
We now use that

w(UτP) + w(VτP) −w(Uγ) −w(Vγ′⊺)
= β(# of vanishing edges in Uγ) + β(# of vanishing edges in Vγ′⊺)
− β(# of edges added to Uγ) − β(# of edges added to Vγ′⊺)

≤ β(# of vanishing edges in Uγ) + β(# of vanishing edges in Vγ′⊺)

Plugging this in, we have that

slack(τP) − slack(τ)

≥
1− α

2

(
w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ)

)
+ (γ− αβ)

(
|E(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
−
β− αβ

2

(
(# of vanishing edges in Uγ) + (# of vanishing edges in Vγ′⊺)

)
+ (γ− αβ) (edgereduction)

+
β

2

(
(# of vanishing edges in Uγ) + (# of vanishing edges in Vγ′⊺)

)
=

1− α
2

(
w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ)

)
+ (γ− αβ)

(
|E(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
+ (γ− αβ) · edgereduction

+
αβ

2

(
(# of vanishing edges in Uγ) + (# of vanishing edges in Vγ′⊺)

)
as needed.

41

Corollary 4.27.

slack(τP) − slack(τ)

≥ (γ− αβ) ·

(
|Etot(τP)| −

|E(UτP)|+ |E(VτP)|

2
− |Etot(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

)
+

1− α
2

(# of vertices in (UτP ∪VτP) \ (UτP ∩VτP) not incident to Etot(τP)) .

Proof. Following our slack calculation above, observe that

(1− α)
(

w(Uγ) + w(Vγ′⊺) −w(Uτ) −w(Vτ)
2

)
≥ 0

since Uγ is a larger separator than Uτ = Vγ, as γ is a left shape (and likewise for Vγ′⊺
and Vτ = Uγ′⊺). Furthermore, this holds if we remove the degree-0 vertices from Uγ or
Vγ′⊺ , since Uγ remains a separator without these vertices. Therefore we may replace the
right-hand side by

1− α
2

(
of degree-0 vertices in (Uγ ∪Vγ′⊺) \ (Uγ ∩Vγ′⊺)

)
.

The edge factors follow immediately from the slack formula. Thus the claim holds.

4.4.1 Proof of the intersection tradeoff lemma

Lemma 4.26 (Intersection tradeoff lemma). Given is a shape τ, left shapes γ,γ′, an intersection
pattern P ∈ Pγ−,τ,(γ′⊺)− such that the following structural property holds:

Uγ is the leftmost SMVS of Uγ and Vγ ∪ Vintersected(γ), and Vγ′⊺ is the rightmost
SMVS of Uγ′⊺ ∪Vintersected(γ

′⊺) and Vγ′⊺ .

Let S be an SMVS of τ, let τP be the shape resulting from P followed by linearization, and let S′ be
an SMVS of τP. Then,

w(Uγ) + w(Vγ′⊺) −w(S′) + | Iso(τP)| ≤ w(Uτ) + w(Vτ) −w(S) + | Iso(τ)|
+ (# of intersections) − β (linearization)
− β(# of vanishing edges in Uγ)
− β(# of vanishing edges in Vγ′⊺)

Proof. Let S′pre be the preimage of S′ before the intersections, as a subset of V(γ ◦ τ ◦ γ′⊺).
We construct sets X ⊆ V(γ), Y ⊆ V(τ), and Z ⊆ V(γ′⊺) as follows.

1. We take X0 to be the set of vertices in V(γ) \ S′pre which can be reached from Uγ by
a path of non-vanishing edges in γ \ S′pre, are either intersected or are in Vγ, and are
not isolated in τP. We then take X = X0 ∪ (S′pre ∩V(γ)).

42

2. We take Yl to be the set of non-isolated vertices in V(τ) which are also in V(γ)
(either because they are in Vγ = Uτ or because of an intersection) and which are
not reachable from Uγ by a path of non-vanishing edges in γ \ S′pre. Similarly, we
take Yr to be the set of non-isolated vertices in V(τ) which are also in V(γ′⊺) (either
because they are in Vτ = Uγ′⊺ or because of an intersection) and which are not
reachable from Vγ′⊺ by a path of non-vanishing edges in γ′⊺ \ S′pre. We then take
Y = Yl ∪Yr ∪Vcommon ∪ (S′pre ∩Vτ) where Vcommon is the set of vertices which appear
in γ, τ, and γ′⊺.

3. We take Z0 to be the set of vertices in V(γ′⊺) \S′pre which can be reached from Vγ′⊺ by
a path of non-vanishing edges in γ′⊺ \ S′pre, are either intersected or are in Uγ′⊺ , and
are not isolated in τP. We take Zextra to be the set of vertices in V(γ′⊺) \ S′pre which
are also in V(γ) and which are not reachable from Uγ by a path of non-vanishing
edges in γ \ S′pre. We then take Z = Z0 ∪Zextra ∪ (S′pre ∩V(γ′⊺)).

Claim 4.28.

1. X separates Uγ from Vγ ∪ {intersected vertices}.

2. Y separates Uτ from Vτ

3. Z separates Uγ′⊺ ∪ {intersected vertices} from Vγ′⊺

Proof of Claim 4.28. Statements 1 and 3 follow from the definitions of X and Z. For state-
ment 2, assume there is a path P from Uτ to Vτ which does not intersect Y. Let u be the
last vertex in P which is in γ (either because u is in Vγ = Uτ or because of an intersection)
and let v be the next vertex in P which is in γ′⊺ (either because v is in Vτ = Uγ′⊺ or because
of an intersection). Since u < Y, there is a path of non-vanishing edges in γ \ S′pre from Uγ
to u. Since v < Y, there is a path of non-vanishing edges in γ′⊺ \ S′pre from v to Vγ′⊺ .

Now consider the part of P between u and v. For the vertices in this part, only u is in
V(γ) and only v is in V(γ′⊺), so no edges in this part vanish. Since no vertex of P is in Y,
none of these vertices are in S′pre. Thus, we can compose these path segments to obtain a
path of non-vanishing edges from Uγ to Vγ which does not intersect S′. This contradicts
the fact that S′ is the SMVS of τP.

We conclude that w(X) ≥ w(Uγ), w(Y) ≥ w(S), and w(Z) ≥ w(Vγ′⊺) . To complete the
proof of the intersection tradeoff lemma, we now need to show that

w(X) + w(Y) + w(Z) ≤ (# of intersections) − (| Iso(τP)| − | Iso(τ)|)

− β

 ∑
e∈Etot(τP)

(mult(e) − 1− 1e vanishes)

+ w(Uτ) + w(Vτ) + w(S′)

− β((# of vanishing edges in Uγ) + (# of vanishing edges in Vγ′⊺))

43

To show this, we consider the number of times vertices in V(τP) and edges in Etot(τP)
appear on both sides.

1. Vertices u in S′ appear 1u∈V(γ) + 1u∈V(τ) + 1u∈V(γ′⊺) times on the left hand side and
1 + 1u∈Uτ + 1v∈Vτ + (# of intersections for u) times on the right hand side. It is not
hard to check that these two expressions are equal.

2. Vertices u which are not in S′ and are not isolated appear (# of intersections for u) +
1u∈Uτ + 1v∈Vτ times on the right hand side and at most (# of intersections for u) +
1u∈Uτ + 1v∈Vτ = 1u∈V(γ) + 1u∈V(τ) + 1u∈V(γ′⊺) − 1 times on the left hand side. To see
this, observe that u cannot be in both X and Yl, cannot be in both Yr and Z0, and
cannot be in both X and Z.

3. Vertices u which are in Iso(τP) \ Iso(τ) (and thus not in S′) cannot appear in X or Z
and appear in Y if and only if they appear in γ, τ, and γ′⊺. Thus, u appears on the
left hand side 1u∈V(γ) + 1u∈V(τ) + 1u∈V(γ′⊺) − 2 times and appears on the right hand
side (# of intersections for u) + 1u∈Uτ + 1v∈Vτ − 1 = 1u∈V(γ) + 1u∈V(τ) + 1u∈V(γ′⊺) − 2
times.

4. Edges e between two vertices in S′ appear 1e∈E(γ) + 1e∈E(τ) + 1e∈E(γ′⊺) times on the
left hand side and

1e does not vanish + 1e∈E(Uτ) + 1e∈E(Vτ) + (mult(e) − 1− 1e vanishes)

+ 1e vanishes from Uγ + 1e vanishes from Vγ′⊺

= 1e∈E(γ) + 1e∈E(τ) + 1e∈E(γ′⊺) − 2 · 1e vanishes + 1e vanishes from Uγ + 1e vanishes from Vγ′⊺

≤ 1e∈E(γ) + 1e∈E(τ) + 1e∈E(γ′⊺)

times on the right hand side.

5. Non-vanishing edges e which are not between two vertices in S′ appear 1e∈E(Uτ) +
1e∈E(Vτ) + mult(e) − 1 times on the right hand side and at least 1e∈E(γ) + 1e∈E(τ) +

1e∈E(γ′⊺) − 1 = 1e∈E(Uτ) + 1e∈E(Vτ) + mult(e) − 1 times on the left hand side. To see
this, observe that if e appears in both E(γ) and E(τ) then either e ∈ E(X) or e ∈ E(Y)
(depending on whether the endpoints of e are reachable from Uγ). Similarly, if e
appears in both E(τ) and E(γ′⊺) then either e ∈ E(Y) or e ∈ E(Z). Finally, if e appears
in both E(γ) and E(γ′⊺) then either e ∈ E(X) or e ∈ E(Z)

6. Vanishing edges e which are not between two vertices in S′ appear

1e∈E(Uτ) + 1e∈E(Vτ) + mult(e) − 2 + 1e vanishes from Uγ + 1e vanishes from Vγ′⊺

= 1e∈E(γ) + 1e∈E(τ) + 1e∈E(γ′⊺) − 2 + 1e vanishes from Uγ + 1e vanishes from Vγ′⊺

times on the right hand side and at least

1e∈E(γ) + 1e∈E(τ) + 1e∈E(γ′⊺) − 2 + 1e vanishes from Uγ + 1e vanishes from Vγ′⊺

44

times on the left hand side. To see this, we make the following observations:

(a) 1e∈E(Y) ≥ 1e∈E(γ) + 1e∈E(τ) + 1e∈E(γ′⊺) − 2 as if e appears in E(γ), E(τ), and E(γ′⊺)
then e ∈ E(Y).

(b) 1e∈E(X) ≥ 1e vanishes from Uγ as if e vanishes from Uγ then e ∈ E(X).

(c) 1e∈E(Z) ≥ 1e vanishes from Vγ′⊺ as if e vanishes from Vγ′⊺ then e ∈ E(Z).

4.5 Slack for Removing Middle Edge Indicators

We analyze the slack for the Removing middle edge indicators operation after the In-
tersection term decomposition operation. To do this, we may imagine that an edge
removed during the Removing middle edge indicators operation was removed immedi-
ately before modifying the sets Uτ and Vτ; applying the Intersection term decomposition
operation will result in the same shape whether the edge is removed before or after the
operation.11 12

Theorem 4.29. Let R2 → R′2 be a ribbon that undergoes the Adding left and right indicators
operation. Let τ and τ′ be their respective shapes. Then

slack(τ′) − slack(τ) ≥
γ

2
(x + x∩)

where x is the total number of removed edges, and x∩ is the number of edges removed from Uτ ∩Vτ.

Proof. By Lemma 4.10,

slack(τ′) − slack(τ)

= (
1
2
− α) (w(τ′) −w(τ)) − (1− α)

(
w(Uτ′) + w(Vτ′) −w(Uτ) −w(Vτ)

2

)
+ (γ− αβ)

(
|E(τ′)| −

|E(Uτ′)|+ |E(Vτ′)|
2

− |E(τ)|+
|E(Uτ)|+ |E(Vτ)|

2

)
+

w(S′) −w(S)
2

−
| Iso(τ′)| − | Iso(τ)|

2
− logn

(
c≈
τ′

c≈τ

)
.

We now make the following observations:

11Formally, this requires the following check. When an edge indicator moves out of Uτ ∪ Vτ and into
the middle, this means that the SMVS no longer includes the edge. Therefore, whether or not the edge is
present is not affecting the calculation of the SMVS, and therefore the presence of the edge is not affecting
the recursion.

12Edges removed by the Removing middle edge indicators operation in the Finding PMVS subroutine
can be analyzed using either Theorem 4.29 or the analysis in Section 4.3.

45

1. For all vertex sets X ⊆ V(τ) equal to X′ ⊆ V(τ′), we have

w(X′) −w(X) = β (# of edges removed from X) .

In particular, w(τ′)−w(τ) = βx, w(Uτ′)−w(Uτ) = β (# of edges removed from Uτ),
and w(Vτ′) −w(Vτ) = β (# of edges removed from Vτ).

2. logn(c
≈

τ′) = logn(c
≈
τ) − γx. Similarly to Claim 4.17, when the edge indicator is

replaced by a constant term, we get a factor of magnitude n−
β
2 from the update

equation. Furthermore, we get a factor of n
β
2−γ shifted from λτ to cτ′ . Multiplying

these factors together gives a factor of magnitude n−γ per removed edge.

3.

|E(τ′)| −
|E(Uτ′)|+ |E(Vτ′)|

2
− |E(τ)|+

|E(Uτ)|+ |E(Vτ)|
2

= −
1
2
((# of edges removed from Uτ \Vτ) + (# of edges removed from Vτ \Uτ))

= −
1
2
(x− x∩)

4. w(S′) ≥ w(S) + βx∩. To see this, let S′pre be S′ before the edges are removed. Since
S′pre is also a separator for τ, w(S′pre) ≥ w(S). Since all separators for τ contain
Uτ ∩Vτ, removing the edges increases the weight of all separators for τ by at least
βx∩ which implies that w(S′) ≥ w(S′pre) + βx∩. Putting these pieces together, w(S′) ≥
w(S) + βx∩, as needed.

5. Iso(τ′) = Iso(τ).

Putting these pieces together, we have that

slack(τ′) − slack(τ) ≥ (
1
2
− α)βx−

(1− α)β
2

(x + x∩) −
γ− αβ

2
(x− x∩) +

β

2
x∩ + γx

=
γ

2
(x + x∩) .

as needed.

4.6 Final slack lower bound

Theorem 4.7. (Slack lower bound). At all times in the decomposition procedure described in
Section 3.4, letting τ be the shape of R2,

slack(τ) ≥ ε
(
|Etot(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

+ |Vtot(τ)| −
|Uτ|+ |Vτ|

2

)
where ε = min

{
1− α, γ−αβ8

}
.

46

Proof. Examining Corollary 4.20, Corollary 4.27, Theorem 4.29,

slack(τ) ≥
γ− αβ

2

(
|Etot(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

)
+

1− α
2

(# of vertices in (Uτ ∪Vτ) \ (Uτ ∩Vτ) not incident to Etot(τ)) .

Note that the latter term is initially zero and after the Finding PMVS subroutine, since
otherwise a degree-0 vertex in (Uτ′ ∪Vτ′) \ (Uτ′ ∩Vτ′) could be removed to reduce the
size of the separator.

Every vertex in Vtot(τ) \ (Uτ ∪ Vτ) is not isolated and so is incident to an edge in
Etot(τ) \ (E(Uτ) ∪ E(Vτ)). On the other hand, the vertices of Uτ ∪ Vτ which are not
incident to an edge of Etot(τ) are accounted for by the second term. In summary,

γ− αβ

2

(
|Etot(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

)
+

1− α
2

(# of vertices in (Uτ ∪Vτ) \ (Uτ ∩Vτ) not incident to Etot(τ))

≥
γ− αβ

4

(
|Etot(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

)
+ min

{
1− α,

γ− αβ

8

} (
|Vtot(τ)| −

|Uτ|+ |Vτ|
2

)
as needed.

5 Conclusion

In this work, we showed Sum-of-Squares lower bounds for Densest k-Subgraph. Our
results lend strength to the conjecture that Densest k-Subgraph is truly a hard problem
in the predicted “hard” parameter regime. Our results are in line with the log-density
framework for Densest-k-Subgraph, complementing the extraordinary work of [BCC+10]
from over a decade ago.

Our work provides a formal lower bound against a concrete class of algorithms for
Densest k-Subgraph. For the optimistic algorithm designer that wishes to solve Densest
k-Subgraph, what kind of algorithms could circumvent our lower bound? First, one could
try to modify the constraints or objective of the semi-definite program. For example,
“mismatching” the size of the hidden subgraph may be helpful for the related Planted
Clique problem [AFdF21]. Our proof does not formally rule out non-standard SDP-based
algorithms, although we believe it is likely that our proof could be modified into a lower
bound against other SDPs. Second, algebraic approaches based on finite fields, Gaus-
sian elimination, or lattice-based methods are not captured by Sum-of-Squares reasoning

47

[ZSWB22]. However, these techniques typically require a rigid “noise-free” structure in
the problem which isn’t present in Densest k-Subgraph, so such an algorithm would be
unexpected.

There are some technical limitations to our work, which are also present in almost all
existing SoS lower bounds. Technical improvements such as improving the SoS degree
from nε to Ω̃(k), or tightening the slack γ−αβ seem out of reach for our current techniques.
We could also consider the closely related planted model where the size of the planted
subgraph is not approximately but exactly k. Our analysis doesn’t go through immediately
in this setting for technical reasons, which is also the case in most existing SoS lower
bounds. With additional work, this might be overcome, as Pang [Pan21] did for Planted
Clique. That said, we believe that the behavior of SoS is qualitatively the same.

References
[AAM+11] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein.

Inapproximabilty of densest k-subgraph from average case hardness, 2011. Manuscript, 6,
2011. 1, 7

[ABB+10] Sanjeev Arora, Boaz Barak, Markus Brunnermeier, Rong Ge, et al. Computational complexity
and information asymmetry in financial products. In ICS, pages 49–65, 2010. 1

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different
assumptions. In Proceedings of the forty-second ACM symposium on Theory of computing, pages
171–180, 2010. 1

[AC09] Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In In-
ternational workshop on algorithms and models for the web-graph, pages 25–37. Springer, 2009.
1

[AFdF21] Maria Chiara Angelini, Paolo Fachin, and Simone de Feo. Mismatching as a tool to enhance
algorithmic performances of monte carlo methods for the planted clique model. Journal of
Statistical Mechanics: Theory and Experiment, 2021(11):113406, 2021. 47

[AHI02] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense subgraphs.
Discrete Applied Mathematics, 121(1-3):15–26, 2002. 1, 7

[AJT19] Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approximating constraint
satisfaction problems on high-dimensional expanders. Manuscript, 2019. 2

[Ame15] Brendan PW Ames. Guaranteed recovery of planted cliques and dense subgraphs by convex
relaxation. Journal of Optimization Theory and Applications, 167(2):653–675, 2015. 1, 7

[AMP20] Kwangjun Ahn, Dhruv Medarametla, and Aaron Potechin. Graph matrices: Norm bounds
and applications. arXiv preprint arXiv:1604.03423, 2020. 5

[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows and a
√

log n-approximation
to sparsest cut. In Proceedings of the 36th ACM Symposium on Theory of Computing, 2004. 1

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009. 8

[BA20] Polina Bombina and Brendan Ames. Convex optimization for the densest subgraph and densest
submatrix problems. In SN Operations Research Forum, volume 1, pages 1–24. Springer, 2020. 1,
7

48

[BABB21] Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The average-case complexity of count-
ing cliques in Erdős–Rényi hypergraphs. SIAM Journal on Computing, pages FOCS19–39, 2021.
7

[Bar15] Siddharth Barman. Approximating nash equilibria and dense bipartite subgraphs via an
approximate version of caratheodory’s theorem. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 361–369, 2015. 1, 7

[BB19] Matthew Brennan and Guy Bresler. Optimal average-case reductions to sparse pca: From weak
assumptions to strong hardness. arXiv preprint arXiv:1902.07380, 2019. 9

[BB20] Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret
leakage. In Conference on Learning Theory, pages 648–847. PMLR, 2020. 2, 7

[BBH18] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational lower
bounds for problems with planted sparse structure. In Conference On Learning Theory, pages
48–166. PMLR, 2018. 7, 9

[BBH19] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Universality of computational lower
bounds for submatrix detection. In Conference on Learning Theory, pages 417–468. PMLR, 2019.
9

[BBH+20] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm. Statistical
query algorithms and low-degree tests are almost equivalent. arXiv preprint arXiv:2009.06107,
2020. 2

[BBK+21] Mitali Bafna, Boaz Barak, Pravesh K Kothari, Tselil Schramm, and David Steurer. Playing
unique games on certified small-set expanders. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1629–1642, 2021. 2

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities – an O(n1/4) approximation for Densest k-Subgraph. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, 2010. 1, 2, 3, 4, 7, 47

[BCG+12] Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaraghavan, and
Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph.
In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages
388–405. SIAM, 2012. 1, 2, 8

[BDJ+20] Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M Kane, Pravesh K Kothari, and Santosh S
Vempala. Robustly learning mixtures of k arbitrary gaussians. arXiv preprint arXiv:2012.02119,
2020. 2

[BHK+16] B. Barak, S. B. Hopkins, J. Kelner, P. Kothari, A. Moitra, and A. Potechin. A nearly tight sum-of-
squares lower bound for the planted clique problem. In Proceedings of the 57th IEEE Symposium
on Foundations of Computer Science, pages 428–437, 2016. 5, 7, 8, 18

[BHKL22] Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett. High dimensional expanders:
Eigenstripping, pseudorandomness, and unique games. In Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1069–1128. SIAM, 2022. 2

[BK20] Ainesh Bakshi and Pravesh K Kothari. List-decodable subspace recovery: Dimension inde-
pendent error in polynomial time. arXiv preprint arXiv:2002.05139, 2020. 2

[BKRW17] Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. Eth hardness for
densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1326–1341. SIAM, 2017. 1, 7

49

[BP21] Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in polynomial
time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
102–115, 2021. 2

[CDK12] Eden Chlamtáč, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners via
dense subgraphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science,
pages 758–767. IEEE, 2012. 1, 4

[CDK+18] Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca. The
densest k-subhypergraph problem. SIAM Journal on Discrete Mathematics, 32(2):1458–1477,
2018. 1

[CDM17] Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight approx-
imations for small set bipartite vertex expansion. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 881–899. SIAM, 2017. 1, 4

[CHK11] Moses Charikar, MohammadTaghi Hajiaghayi, and Howard Karloff. Improved approximation
algorithms for label cover problems. Algorithmica, 61(1):190–206, 2011. 1

[CL15] Chandra Chekuri and Shi Li. A note on the hardness of approximating the k-way hypergraph
cut problem. Manuscript, http://chekuri. cs. illinois. edu/papers/hypergraph-kcut. pdf, 2015. 1

[CLLR15] Wei Chen, Fu Li, Tian Lin, and Aviad Rubinstein. Combining traditional marketing and
viral marketing with amphibious influence maximization. In Proceedings of the Sixteenth ACM
Conference on Economics and Computation, pages 779–796, 2015. 1

[CLRS16] Siu On Chan, James R Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large lp relaxations. Journal of the ACM (JACM), 63(4):1–22, 2016. 8

[CM18] Eden Chlamtáč and Pasin Manurangsi. Sherali-adams integrality gaps matching the log-
density threshold. arXiv preprint arXiv:1804.07842, 2018. 2, 4, 8, 18

[CMM09] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for sherali-
adams relaxations. In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 283–292, 2009. 8

[CMMV17] Eden Chlamtáč, Pasin Manurangsi, Dana Moshkovitz, and Aravindan Vijayaraghavan. Ap-
proximation algorithms for label cover and the log-density threshold. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 900–919. SIAM,
2017. 1, 4, 8

[CMVZ15] Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou. Approximation
algorithms and hardness of the k-route cut problem. ACM Transactions on Algorithms (TALG),
12(1):1–40, 2015. 1

[CX14] Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted problems and
submatrix localization with a growing number of clusters and submatrices. arXiv preprint
arXiv:1402.1267, 2014. 9

[CZ17] Stephen R Chestnut and Rico Zenklusen. Hardness and approximation for network flow
interdiction. Networks, 69(4):378–387, 2017. 1

[DKSV06] Nikhil R Devanur, Subhash A Khot, Rishi Saket, and Nisheeth K Vishnoi. Integrality gaps
for sparsest cut and minimum linear arrangement problems. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, pages 537–546, 2006. 8

[Fei02] Uriel Feige. Relations between average case complexity and approximation complexity. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 534–543,
2002. 1, 7

50

[FKP+19] Noah Fleming, Pravesh Kothari, Toniann Pitassi, et al. Semialgebraic proofs and efficient
algorithm design. Foundations and Trends® in Theoretical Computer Science, 14(1-2):1–221, 2019.
9

[FL01] Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms, 41(2):174–211, 2001. 1, 7

[FPK01] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001. 1, 7

[FS+97] Uriel Feige, Michael Seltser, et al. On the densest k-subgraph problem. Citeseer, 1997. 1, 7

[GJJ+20] Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham
Rajendran. Sum-of-squares lower bounds for Sherrington-Kirkpatrick via planted affine
planes. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science—FOCS 2020,
pages 954–965. IEEE Computer Soc., Los Alamitos, CA, [2020]©2020. 5, 7, 8, 18

[GL09] Doron Goldstein and Michael Langberg. The dense k subgraph problem. arXiv preprint
arXiv:0912.5327, 2009. 1, 7

[Gri01] Dima Grigoriev. Complexity of positivstellensatz proofs for the knapsack. computational com-
plexity, 10(2):139–154, 2001. 1

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–
1145, 1995. Preliminary version in Proc. of STOC’94. 1, 8

[HIM11] Koki Hamada, Kazuo Iwama, and Shuichi Miyazaki. The hospitals/residents problem with
quota lower bounds. In European Symposium on Algorithms, pages 180–191. Springer, 2011. 1

[HJ06] Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner tree
problem via a new approach of primal-dual schema. In SODA, volume 6, pages 631–640, 2006.
1

[HJL+06] Mohammad Taghi Hajiaghayi, Kamal Jain, Lap Chi Lau, II Măndoiu, Alexander Russell,
and Vijay V Vazirani. Minimum multicolored subgraph problem in multiplex pcr primer
set selection and population haplotyping. In International Conference on Computational Science,
pages 758–766. Springer, 2006. 1

[HKP15] Samuel B Hopkins, Pravesh K Kothari, and Aaron Potechin. Sos and planted clique: Tight
analysis of mpw moments at all degrees and an optimal lower bound at degree four. arXiv
preprint arXiv:1507.05230, 2015. 8

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm,
and David Steurer. The power of sum-of-squares for detecting hidden structures. In Proceedings
of the 58th IEEE Symposium on Foundations of Computer Science, pages 720–731. IEEE, 2017. 2, 7,
8

[HL18] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1021–1034,
2018. 2

[Hop18] Samuel Brink Klevit Hopkins. Statistical Inference and the Sum of Squares Method. PhD thesis,
Cornell University, 2018. 2, 7, 8, 9

[Hop20] Samuel B Hopkins. Mean estimation with sub-gaussian rates in polynomial time. The Annals
of Statistics, 48(2):1193–1213, 2020. 2

51

[HS21] Shuichi Hirahara and Nobutaka Shimizu. Nearly optimal average-case complexity of counting
bicliques under seth. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2346–2365. SIAM, 2021. 7

[HWX15] Bruce Hajek, Yihong Wu, and Jiaming Xu. Computational lower bounds for community
detection on random graphs. In Conference on Learning Theory, pages 899–928. PMLR, 2015. 1, 9

[HWX16] Bruce Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster recovery threshold via
semidefinite programming. IEEE Transactions on Information Theory, 62(5):2788–2797, 2016. 1

[Jon22] Chris Jones. Symmetrized Fourier Analysis of Convex Relaxations for Combinatorial Optimization
Problems. PhD thesis, The University of Chicago, 2022. 8, 9

[JPR+22] Chris Jones, Aaron Potechin, Goutham Rajendran, Madhur Tulsiani, and Jeff Xu. Sum-of-
squares lower bounds for sparse independent set. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 406–416. IEEE, 2022. 5, 6, 7, 8, 13, 58, 64

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972. 1

[Kho06] Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM Journal on Computing, 36(4):1025–1071, 2006. 1, 7

[KKM18] Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms for outlier-robust
regression. In Conference On Learning Theory, pages 1420–1430. PMLR, 2018. 2

[KL20] Yash Khanna and Anand Louis. Planted models for the densest k-subgraph problem. arXiv
preprint arXiv:2004.13978, 2020. 1, 3, 4, 7

[KMNT08] Guy Kortsarz, Vahab S Mirrokni, Zeev Nutov, and Elena Tsanko. Approximating minimum-
power degree and connectivity problems. In Latin American Symposium on Theoretical Informatics,
pages 423–435. Springer, 2008. 1

[KMOW17] Pravesh Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower
bounds for refuting any CSP. In Proceedings of the 49th ACM Symposium on Theory of Computing,
2017. 8

[KMR17] Pravesh K Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by
juntas and weakly-exponential lower bounds for lp relaxations of csps. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, pages 590–603, 2017. 8

[KP93] Guy Kortsarz and David Peleg. On choosing a dense subgraph. IEEE, 1993. 7

[KS07] Stavros G Kolliopoulos and George Steiner. Partially ordered knapsack and applications to
scheduling. Discrete Applied Mathematics, 155(8):889–897, 2007. 1

[KS17] Pravesh K Kothari and David Steurer. Outlier-robust moment-estimation via sum-of-squares.
arXiv preprint arXiv:1711.11581, 2017. 2

[Kun20] Dmitriy Kunisky. Positivity-preserving extensions of sum-of-squares pseudomoments over
the hypercube. arXiv preprint arXiv:2009.07269, 2020. 8

[Kun21] Dmitriy Kunisky. Spectral Barriers in Certification Problems. PhD thesis, New York University,
2021. 2

[KV15] Subhash A Khot and Nisheeth K Vishnoi. The unique games conjecture, integrality gap for
cut problems and embeddability of negative-type metrics into ℓ1. Journal of the ACM (JACM),
62(1):1–39, 2015. 8

52

[KWB22] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational hardness
of hypothesis testing: Predictions using the low-degree likelihood ratio. In ISAAC Congress
(International Society for Analysis, its Applications and Computation), pages 1–50. Springer, 2022.
7, 8

[Las01] Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on optimization, 11(3):796–817, 2001. 1

[Lee17] Euiwoong Lee. Partitioning a graph into small pieces with applications to path transversal.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1546–1558. SIAM, 2017. 1

[LM21] Allen Liu and Ankur Moitra. Settling the robust learnability of mixtures of gaussians. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 518–531,
2021. 2

[LNV14] Zhentao Li, Manikandan Narayanan, and Adrian Vetta. The complexity of the simultaneous
cluster problem. J. Graph Algorithms Appl., 18(1):1–34, 2014. 1

[LRS15] James R Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semidefinite
programming relaxations. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pages 567–576, 2015. 2

[Man17] Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-
subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 954–961, 2017. 1, 7

[MM15] Pasin Manurangsi and Dana Moshkovitz. Approximating dense max 2-csps. arXiv preprint
arXiv:1507.08348, 2015. 7, 8

[MPW15] Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted
clique. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages
87–96, 2015. 8

[MRS20] Pasin Manurangsi, Aviad Rubinstein, and Tselil Schramm. The strongish planted clique hy-
pothesis and its consequences. arXiv preprint arXiv:2011.05555, 2020. 9

[MRX20] Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower bounds:
degree-2 to degree-4. In Proceedings of the 52nd ACM Symposium on Theory of Computing, pages
840–853, 2020. 8

[MWZ23] Cheng Mao, Alexander S. Wein, and Shenduo Zhang. Detection-recovery gap for planted
dense cycles, 2023. 1

[Nes00] Yurii Nesterov. Squared functional systems and optimization problems. In High performance
optimization, pages 405–440. Springer, 2000. 1

[O’D17] Ryan O’Donnell. Sos is not obviously automatizable, even approximately. In 8th Innovations
in Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017. 3

[Pan21] Shuo Pang. SOS lower bound for exact planted clique. In 36th Computational Complexity
Conference, volume 200 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. 26, 63. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2021. 48

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness
and optimization. PhD thesis, California Institute of Technology, 2000. 1

[Pis07] David Pisinger. The quadratic knapsack problem—a survey. Discrete applied mathematics,
155(5):623–648, 2007. 1

53

[PR20] Aaron Potechin and Goutham Rajendran. Machinery for proving sum-of-squares lower bounds
on certification problems. arXiv preprint arXiv:2011.04253, 2020. 5, 8, 9, 68

[PR22] Aaron Potechin and Goutham Rajendran. Sub-exponential time sum-of-squares lower bounds
for principal components analysis. Advances in Neural Information Processing Systems, 2022. 7,
8, 9

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th ACM Symposium on Theory of Computing, pages 245–254, 2008. 1

[Raj18] Goutham Rajendran. Combinatorial optimization via the sum of squares hierarchy. arXiv
preprint arXiv:2208.04374, 2018. 2, 8

[Raj22] Goutham Rajendran. Nonlinear Random Matrices and Applications to the Sum of Squares Hierarchy.
PhD thesis, The University of Chicago, 2022. 8

[RS10] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the forty-second ACM symposium on Theory of computing, pages 755–764, 2010. 1,
7

[RSS18] Prasad Raghavendra, Tselil Schramm, and David Steurer. High dimensional estimation via
sum-of-squares proofs. In Proceedings of the International Congress of Mathematicians: Rio de
Janeiro 2018, pages 3389–3423. World Scientific, 2018. 2, 9, 18

[RT23] Goutham Rajendran and Madhur Tulsiani. Concentration of polynomial random matrices via
efron-stein inequalities. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3614–3653. SIAM, 2023. 6, 8, 13

[RW17] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares proofs. In
Proceedings of the 44th International Colloquium on Automata, Languages and Programming. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. 3

[Sch17] Tselil Schramm. Random Matrices and the Sum-of-Squares Hierarchy. PhD thesis, UC Berkeley,
2017. 9

[SFL16] Piotr Skowron, Piotr Faliszewski, and Jérôme Lang. Finding a collective set of items: From
proportional multirepresentation to group recommendation. Artificial Intelligence, 241:191–216,
2016. 1

[Sho87] Naum Zuselevich Shor. An approach to obtaining global extremums in polynomial mathe-
matical programming problems. Cybernetics, 23(5):695–700, 1987. 1

[ST08] Akiko Suzuki and Takeshi Tokuyama. Dense subgraph problems with output-density condi-
tions. ACM Transactions on Algorithms (TALG), 4(4):1–18, 2008. 7

[SW98] Anand Srivastav and Katja Wolf. Finding dense subgraphs with semidefinite programming.
In International Workshop on Approximation Algorithms for Combinatorial Optimization, pages 181–
191. Springer, 1998. 1, 7

[SW22] Tselil Schramm and Alexander S Wein. Computational barriers to estimation from low-degree
polynomials. The Annals of Statistics, 50(3):1833–1858, 2022. 9

[Tul09] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings of the 41st
ACM Symposium on Theory of Computing, 2009. 8

[TV17] Sumedh Tirodkar and Sundar Vishwanathan. On the approximability of the minimum rainbow
subgraph problem and other related problems. Algorithmica, 79(3):909–924, 2017. 1

[ZSWB22] Ilias Zadik, Min Jae Song, Alexander S Wein, and Joan Bruna. Lattice-based methods surpass
sum-of-squares in clustering. In Conference on Learning Theory, pages 1247–1248. PMLR, 2022.
48

54

A Additional Content on Graph Matrices

A.1 Proof of Proposition 2.23

Proposition 2.23. Every shape has an SMVS which is left of every SMVS. Furthermore, there is
a unique SMVS left of every SMVS with minimum vertex size.

To prove this, we prove a stronger structural characterization of the leftmost SMVSs
of a shape α. The leftmost SMVS of αwith minimum vertex size is then S in the statement
of Proposition A.1. The intuition for this structural characterization is that the sets Si are
“subgraphs of weight 0” that may be freely added to or removed from the “necessary
core” SMVS S.

Proposition A.1. The collection of SMVS of α which are left of every SMVS has the following
structure: there are disjoint vertex sets S and S1, . . . , Sk such that the collection is exactly S unioned
with

⋃
i∈I Si for all subsets I ⊆ [k].

Proof. First, we prove the existence of a leftmost SMVS. Let S1, S2 be two minimum vertex
separators. Then we can construct a minimum vertex separator to the left of both of them
as follows (see Fig. 3 for a picture). Since this process cannot continue indefinitely, it must
terminate in a vertex separator which is left of all other vertex separators.

Let L1 ⊆ S1 be vertices of S1 reachable from Uα without passing through S2, and
likewise for L2 ⊆ S2. Then we take SL := L1 ∪ L2 ∪ (S1 ∩ S2).

To show that SL is a vertex separator, take a path P from Uα. Without loss of generality,
P passes through S1 before S2 (or at the same time). Then L1 (or S1 ∩ S2) blocks P.

To show that SL is minimum, observe that if we perform the analogous construction of
SR then w(SL) + w(SR) ≤ w(S1) + W(S2). To see this note that |SL|+ |SR| = |S1|+ |S2| and
each edge e appears at least as many times in SL and SR as it does in S1 and S2. In particular,
if e ∈ E(S1) and e ∈ E(S2) then e is also in both E(SL) and E(SR). If e ∈ E(S1) \ E(S2) then e
must be in either E(SL) or E(SR) (note that e cannot go between L1 and R1 as otherwise S2
would not be a separator, see Figure 2). Following similar logic, if e ∈ E(S2) \ E(S1) then e
must be in either E(SL) or E(SR).

Since S1 and S2 are minimum weight vertex separators and w(SL) + w(SR) ≤ w(S1) +
w(S2), we must have that w(SL) = w(SR) = w(S1) = w(S2) so both SL and SR must
be minimum weight vertex separators as well. This finishes the proof of existence of a
leftmost SMVS.

Next, we prove the structural characterization. Suppose S1, S2 are both SMVS which
are left of every SMVS. Since S1 is left of S2, we have L2 = ∅, and likewise L2 = ∅. The
previous construction now shows that SL = S1 ∩ S2 is also an SMVS.

Furthermore, we claim that S1 ∩ S2 is left of every SMVS. Suppose T is another SMVS,
and P is a path from Uα to T. Since S1 is left of T, P passes through (S1 ∩ S2) ∪ R1, and

55

Figure 3: Leftmost and rightmost SMVS

likewise for (S1 ∩ S2) ∪R2. Since S1 is left of S2 and vice versa, path P must pass through
both sets at the same time, therefore it passes through S1 ∩ S2.

Therefore, the collection of SMVS which are left of every SMVS is closed under inter-
section. We may now produce the set S as the intersection of the family. The sets Si are
the refinement of the family under intersection. It must hold that w(S ∪ Si) = w(S) for
all i, since they are both SMVS. Therefore, there cannot be any edges between Si and S j,
otherwise S∪ Si ∪ S j would have smaller weight than S. Therefore, unioning S with any
number of the Si always produces an SMVS with the same weight.

A.2 Additional definitions

Definition A.2 (Automorphism group). For a shape α, define Aut(α) to be the group of graph
isomorphisms of (V(α), E(α)). Equivalently, Aut(α) is the stabilizer subgroup of Sn of any ribbon
R with shape α.

Proposition A.3.
∣∣∣Aut(α)

∣∣∣ ∑
ribbons R of shape α

MR =
∑

injective φ:V(α)→[n]

Mφ(α)

We would like to enforce that all SMVS of a given shape are isomorphic graphs. This
can be achieved by adding an infinitesimally small quantity to w(S) that breaks equality
depending on the isomorphism class of S. Equivalently, we redefine the SMVS to minimize
(w(S), S) lexicographically using an arbitrary and fixed total order of all graphs S. Either
way, we will use the following proposition.

Proposition A.4. If τ is a middle shape, we may assume that Uτ and Vτ are isomorphic as graphs.

B Densest subgraph weight function

As pointed out in Section 3, whether or not edges are present inside a shape’s separator
affects the norm bound. We may find the norm bound using the following weight function
for S being a graph on [n],

56

wdensest(S) = |S| − logn(1/p)
∣∣∣E(S)∩ E(G)

∣∣∣+ logn(1/p)
∣∣∣∣E(S)∩ E(G)

∣∣∣∣ .

Letting Smin be the minimizer of wdensest over separators of AR and BR in a shape α,
then we would like:

∥Mα∥ ≤ Õ
(
n
|V(α)|−wdensest(Smin)

2

)
= Õ

(
n
|V(α)|−|Smin|

2 p
|E(Smin)∩E(G)|−|E(Smin)∩E(G)|

2

)
.

There is a problem with the above “formula”. Observe that the definition of wdensest(S)
depends on the instantiation of G restricted to S. Hence two ribbons of the same shape
may not have the same MVS, and it isn’t possible to define the MVS with respect to wdensest
on a shape level instead of a ribbon level. This is also true of the PMVS as described
in Section 3, although there we handle it by using edge and missing edge indicators
(Remark 3.6). We might like to use edge indicators in a similar way to define wdensest.
However, it is crucial in our analysis that the edge indicators are restricted to be in only
the middle part, where they can be controlled, and are not allowed in the left and right
parts.

The weight function wdensest has the property that if it identifies an MVS with missing
edge evaluations, then removing those Fourier characters still has the same MVS (and
hence this is a positive ribbon that could potentially be used to norm-dominate the original
ribbon). This is stated as follows.

Lemma B.1. If AR is a minimizer of wdensest in ribbon R, and AR contains a missing edge χe, then
AR is a minimizer of wdensest in R′ = (AR, BR, E(R) \ {e}). The same holds for BR.

Proof. The connectivity of AR, BR and AR′ , BR′ is exactly the same, therefore the collection
of left/right separators is the same. By removing the edge, wdensest(AR) decreases, and
therefore it continues to be a minimizer.

C Requirements for Combinatorial Adjustment Terms

In order for the PSDness proof to go through, we need that for some ε > 0, the following
bounds hold:

Bound C.1.

1. ε ≤ α ≤ 1
2

2. γ− αβ ≥ ε

3. β− γ ≥ ε

4. logn(DV) ≤
ε

20

57

5. DV ≥
100
ε DSoS

6. For all proper middle shapes τ, slack(τ) ≥ ε
(
|E(τ)| − |E(Uτ)|+|E(Vτ)|2 + |V(τ)| − |Uτ|+|Vτ|2

)
.

More generally, for any middle shape τP resulting from a sequence of interaction patterns,

slack(τP) ≥ ε

(
|Etot(τP)| −

|E(UτP)|+ |E(VτP)|

2
+ |Vtot(τP)| −

|UτP |+ |VτP |

2

)
7. Badjust(α) and c(α) are at most n

ε
100 (|E(α)|−

|E(Uα)|+|E(Vα)|
2 +|V(α)|− |Uα |+|Vα |2)

8. For an interaction pattern P on γ, τ,γ′⊺, c(P) and N(P) are at most

n
ε

100

(
|E(γ)|−

|E(Uγ)|+|E(Vγ)|
2 +|V(γ)|−

|Uγ |+|Vγ |
2 +|E(γ′⊺)|−

|E(Uγ′⊺)|+|E(Vγ′⊺)|

2 +|V(γ′⊺)|−
|Uγ′⊺ |+|Vγ′⊺ |

2

)

The first five bounds are satisfied by the choice of parameters in the main Theorem 1.1.
The lower bound on the slack was proven in Theorem 4.7. We will verify the bounds on
the c-functions in Appendix E.5.

Remark C.2. While we generally think of ε > 0 as a fixed constant which is independent of n,
here it is okay for ε to depend on n.

Probabilistically, we will assume the following events occur in the random graph
G ∼ Gn,p.

1. The norm bounds hold (Corollary D.4)

2. A small subgraph density bound holds (Proposition D.9)

Both of these occur with probability at least 1 − n−η for a tweakable parameter η. For
Theorem 1.1 we may use η = 1.

D Norm bounds

A central part of our analysis is norm bounds for graph matrices. Fortunately, these norm
bounds were proven in our prior work [JPR+22]. For completeness and exposition we
reprove them here in a simpler form which can be applied more smoothly in our setting.
In particular, we simplify the lower-order dependence at the cost of having extra log(n)
factors in the base of the exponent.

Theorem D.1. For all η > 0, the following statement holds with probability at least 1− n−η.
For all shapes α such that |V(α)| ≤ 3DV, |Uα| ≤ DSoS, and |Vα| ≤ DSoS, letting S be an

SMVS of α and taking q = max
{
10D2

V, ⌈DSoS ln(n)⌉, ⌈η ln(n)⌉
}
,

||Mα|| ≤ 5(6DVq)|V(α)|− |Uα |+|Vα |2 n
|V(α)|−w(S)+Iso(α)

2

58

Proof. It is easy to reduce the case when Iso(α) , ∅ to the case when Iso(α) = ∅ so it is
sufficient to prove the theorem when Iso(α) = ∅. To prove this theorem when Iso(α) = ∅,
we use the following lemma.

Lemma D.2. For all shapes α and all q ∈N,

E
[
tr

(
(MαM

⊺
α)

q
)]
≤ (2q|V(α)|)2q(|V(α)|− |Uα |+|Vα |2)nq|V(α)|

 max
separator S

n−
|S|
2

√

1− p
p

|E(S)|

2q−2

To use this lemma, we observe that for all ε > 0 and all q ∈N, by Markov’s inequality,

Pr

||Mα|| > 2q

√
E

[
tr

(
(MαM

⊺
α)

q
)]

ε

 ≤ Pr

tr
(
(MαM

⊺
α)

q
)
>

E
[
tr

(
(MαM

⊺
α)

q
)]

ε

 < ε
We want to ensure that with probability 1 − n−η, all of our bounds hold. To do this, we
choose ε to be at most n−η times the number of shapes we are considering.

Proposition D.3. For all DV ∈N, there are at most 210DV
2

shapes α such that |V(α)| ≤ 3DV

Proof. We can specify each shape αwith at most 3DV vertices as follows.

1. For each j ∈ [3DV], we specify whether vertex j is in Uα \ Vα, Vα \Uα, Uα ∩ Vα,
V(α) \ (Uα ∪Vα), or does not exist at all. There are 53DV choices for this.

2. For each i, j ∈ [3DV] such that i < j, we specify whether there is an edge between

vertex i and vertex j (assuming they both exist). There are at most 2(
3DV

2) choices for
this.

This gives a total of 53DV 2(
3DV

2) choices. For DV = 1, 53DV 2(
3DV

2) = 1000 ≤ 1024 = 210DV
2

and the ratio 210DV
2

53DV 2(
3DV

2)
grows for larger DV.

Taking ε = 1
210DV

2nη
and taking q = max {10D2

V, ⌈DSoS ln(n)⌉, ⌈η ln(n)⌉}, we make the
following observations:

1. 2q
√

1
ε < e

2. Letting Smin be an SMVS of α,

nq|V(α)|

 max
separator S

n−
|S|
2

√

1− p
p

|E(S)|

2q−2

≤ nw(Smin)
(
n
|V(α)|−w(Smin)

2

)2q

and since w(Smin) ≤ DSoS and q ≥ DSoS ln(n),
2q√

nw(Smin) ≤
√

e

59

Putting these pieces together, we have that for all shapes α such that |V(α)| ≤ 3DV, with
probability at least 1− ε,

||Mα|| ≤ 5(6DVq)|V(α)|− |Uα |+|Vα |2 n
|V(α)|−w(Smin)

2

Theorem D.1 now follows by taking a union bound over all such shapes α.

In our setting, we take DV so that DV ≥ DSoS ln(n) and η ln(n) ≤ 10D2
V so that we can

bound the truncation error appropriately. Thus, in our setting we can take q = 10D2
V.

Corollary D.4. For all DV, DSoS ∈N and η > 0 such that DV ≥ DSoS ln(n) and η ln(n) ≤ 10D2
V,

the following statement holds with probability at least 1− n−η.
For all shapes α (allowing isolated vertices but not multiedges or edge indicators) such that

|V(α)| ≤ 3DV, |Uα| ≤ DSoS, and |Vα| ≤ DSoS, letting Smin be an SMVS of α,

||Mα|| ≤ 5(60D3
V)
|V(α)|− |Uα |+|Vα |2 n

|V(α)|−w(Smin)+|Iso(α)|
2

Based on this corollary, we make the following definition.

Definition D.5 (Badjust). Given a shape α, we define

Badjust(α) = 5(60D3
V)
|V(α)|− |Uα |+|Vα |2 .

Therefore for η ≤ DV, with probability at least 1 − n−η, for all of the shapes α which
we consider, recalling the notation

∥∥∥M≈
α

∥∥∥ from Section 4,

∥Mα∥ ≤ Badjust(α)
∥∥∥M≈α

∥∥∥
We now prove Lemma D.2, which says that

E
[
tr

(
(MαM

⊺
α)

q
)]
≤ (2q|V(α)|)2q(|V(α)|− |Uα |+|Vα |2)nq|V(α)|

 max
separator S

n−
|S|
2

√

1− p
p

|E(S)|

2q−2

Proof of Lemma D.2.

Definition D.6. Define H(α, 2q) to be the graph formed as follows.

1. Take the shapes α1, . . . ,α2q where for all j ∈ [q], α2 j−1 is a copy of α and α2 j is a copy of α⊺.

2. For all i ∈ [2q− 1], glue αi and αi+1 together by setting Vαi = Uαi+1 .Then glue α2q and α1
together by setting Vα2q = Uα1 .

60

When we expand out tr
(
(MαM

⊺
α)

q
)
, we obtain

tr
(
(MαM

⊺
α)

q
)
=

∑
π:V(H(α,2q))→[n]:
π is injective on each αi

2q∏
i=1

∏
e∈E(αi)

χ{π(e)}

where if e = {u, v} then π(e) = {π(u),π(v)}.
We split the maps π into equivalence classes based on the following data.
For each vertex v ∈ V(α j) \Uα j , we specify whether there exists an i < j and a vertex

u ∈ V(αi) such that π(v) = π(u). If so, we specify such a pair (i, u). There are at most
2q|V(α)| choices for this. We have that

∑2q
j=1 V(α j) \Uα j = 2q(|V(α)| − |Uα|+|Vα|2) so the total

number of equivalence classes is at most (2q|V(α)|)2q(|V(α)|− |Uα |+|Vα |2).

We now analyze the contribution to E
[
tr

(
(MαM

⊺
α)

q
)]

from each equivalence class.

Definition D.7. For each j ∈ [2, 2q− 1], let S j be the set of vertices v ∈ α j such that there exists a
i < j and u ∈ V(αi) such that π(u) = π(v) and there exists a k > j and a vertex w ∈ V(αk) such
that π(v) = π(w). Note that we may take u = v if v ∈ Uα j = Vα j−1 and we may take w = v if
v ∈ Vα j = Uα j+1 .

We now observe that for the terms with nonzero expected value, each S j must be a
vertex separator of α j.

Proposition D.8. If S j is not a vertex separator of α j for some j ∈ [2, 2q− 1] then
E

[∏2q
i=1

∏
e∈E(αi) χ{π(e)}

]
= 0

Proof. Assume S j is not a vertex separator of α j for some j ∈ [2, 2q− 1] and let P be a path
from Uα j to Vα j which does not intersect S j.

Let v be the last vertex in P such that there is an i < j and a u ∈ V(αi) such that
π(u) = π(v). This vertex must exist as the first vertex in P is in Uα j = Vα j−1 and thus has
this property.

Note that there cannot be a k > j and a vertex w ∈ V(αk) such that π(v) = π(w) as
otherwise we would have that v ∈ S j. This implies that v < Vα j so v cannot be the last
vertex in P.

Let v′ be the vertex after v in P and consider the edge e = {v, v′}. By the way we chose
v, there is no i′ < j and u′ ∈ V(αi) such that π(u′) = π(v′). As we noted above, there is no
k > j and w ∈ V(αk) such that π(v) = π(w). This implies that χ{π(e)} only appears once in

the product
∏2q

i=1

∏
e∈E(αi) χ{π(e)} so E

[∏2q
i=1

∏
e∈E(αi) χ{π(e)}

]
= 0, as needed.

We now bound the contribution to E
[
tr

(
(MαM

⊺
α)

q
)]

from an equivalence class as
follows. Let S1 = S2q = ∅. For each j,

61

1. For each vertex v ∈ V(α j) \ S j, we assign a factor of
√

n to v.

Note that for each distinct vertex in π(V(H(α, 2q))), this assigns a factor of
√

n to
this vertex for the first and last time it appears which gives a total factor of n.

2. For each edge e ∈ E(S j), we assign a factor of
√

1−p
p to e.

Note that for each distinct edge {x, y} in the multiset π(E(H(α, 2q))), letting m{x,y} be
the number of times the edge {x, y} appears in π(E(H(α, 2q))),

m{x,y} ≤ 2 + |{ j ∈ [2q] : {x, y} ∈ π(S j)}|

Thus, this assigns a factor of at least
√

1− p
p

m{x,y}−2

≥ E

[
χ

m{x,y}

{x,y}

]
to the edge {x, y}.

This gives an upper bound of

nq|V(α)|
2q−1∏
j=2

n−
|Sj |
2

√

1− p
p

|E(S j)|

 ≤ nq|V(α)|

 max
separator S

n−
|S|
2

√

1− p
p

|E(S)|

2q−2

Since there are at most (2q|V(α)|)2q(|V(α)|− |Uα |+|Vα |2) equivalence classes,

E
[
tr

(
(MαM

⊺
α)

q
)]
≤ (2q|V(α)|)2q(|V(α)|− |Uα |+|Vα |2)nq|V(α)|

 max
separator S

n−
|S|
2

√

1− p
p

|E(S)|

2q−2

as needed.

D.1 Conditioning

Subgraphs of G which are excessively dense are highly unlikely to occur and will need
to be “conditioned away”. This part of the analysis is only needed for controlling the
truncation error and calculating Ẽ[1] and is not needed for analysis of the approximate
PSD factorization.

For a small graph S on [n], w(S) is approximately equal to the logarithm of the expected
number of copies of S in G ∼ Gn,p. Therefore, we expect that all subgraphs satisfy w(S) ≥ 0.
We show that this holds approximately in the following proposition.

62

Proposition D.9. For all η > 0 and D ∈ N such that 4 logn(D) < β, the probability that there

is a subgraph H of G ∼ Gn,n−β such that |V(H)| ≤ D and |E(H)| >
|V(H)|+η
β−2 logn(D)

is at most n−η.
Equivalently, with probability at least 1− n−η all subgraphs H of G such that |V(H)| ≤ D satisfy

w(H) ≥ −η− 2
∣∣∣E(H)

∣∣∣ logn(D)

Proof. We use the first moment method. For all a and b such that a ≤ D, the expected
number of subgraphs with exactly a vertices and at least b edges is at most

(
n
a

)(a(a−1)
2

b

)
pb
≤

na
(

a2

2

)b

a!b!
n−bβ

≤
n−η

a!
na+η+(2 logn(D)−β)b

If b ≥ a+η
β−2 logn(D)

then na+η+(2 logn(D)−β)b
≤ 1 so the expected number of graphs with exactly

a vertices and at least b edges is at most n−η
a! . Using Markov’s inequality, this implies that

the probability that there is a subgraph with exactly a vertices and more than a+η
β−2 logn(D)

edges is at most n−η
a! . Taking a union bound over all a ∈ [2, D] (the cases when a ≤ 1

are trivial), the probability of having a subgraph H with at most D vertices and at least
|V(H)|+η
β−2 logn(D)

edges is at most n−η.

Theorem D.10. Conditioned on G having no subgraphs H such that |V(H)| ≤ D and |E(H)| >
|V(H)|+η
β−2 logn(D)

and the norm bounds holding,

1. For all shapes α such that |V(α)| ≤ D,

λα||Mα|| ≤ 2Badjust(α)n(1−α) |Uα |+|Vα |2 +η−(γ−αβ−3 logn(D))|E(α)|

2. For all left shapes σ such that |V(σ)| ≤ D and |Uσ| ≤ DSoS,

λσ||Mσ|| ≤ 2Badjust(σ)n(1−α)DSoS+η+(
β
2−αβ)|E(Vσ)|−(γ−αβ−3 logn(D))|E(σ)|

Note that this may be stronger than the first bound when |Vσ| > DSoS.

Proof. We start with the first statement. Given a shape α, let S∅α be a set of vertices of α
(not necessarily a separator) which minimizes w(S∅α) = |S

∅
α| − βE(S

∅
α). In other words, S∅α

determines the norm bound of the scalar 1⊺Mα1, which is equivalently the shape obtained
from α by setting the matrix indices Uα and Vα to be ∅.

If w(S∅α) ≥ 0, letting S be the SMVS of α, we have that w(α) ≥ w(S) ≥ 0 so we have the
following bounds

63

1.

λα = n(α−1)(|V(α)|− |Uα |+|Vα |2)+(
β
2−γ)|E(α)|

= n(1−α) |Uα |+|Vα |2 −
|V(α)|

2 −(1
2−α)w(α)−(γ−αβ)|E(α)|

≤ n(1−α) |Uα |+|Vα |2 −
|V(α)|

2 −(γ−αβ)|E(α)|

2. ||Mα|| ≤ Badjust(α)n
|V(α)|−w(S)

2 ≤ Badjust(α)n
|V(α)|

2

Putting these bounds together,

λα||Mα|| ≤ Badjust(α)n(1−α) |Uα |+|Vα |2 −(γ−αβ)|E(α)|

We now analyze the case when w(S∅α) < 0. If |E(S∅α)| >
|S∅α|+η

β−2 logn(D)
, we apply the

conditioning argument (Lemma 6.30) from [JPR+22] which allows us to reduce Mα to a
linear combination of shapes with fewer edges before applying our norm bounds.

Lemma D.11. Given a set of edges E, if we know that not all of the edges of E are in E(G) then

χE = −
∑

E′⊆E:E′,E

(
−

√
p

1− p

)|E|−|E′|
χE′

If |E(S∅α)| >
|S∅α|+η

β−2 logn(D)
, we apply Lemma D.11 to S∅α. In particular, we apply the

following step repeatedly:

1. Specify an edge which is removed from E(S∅α) and specify whether there is at least
one more edge which is removed from this application of Lemma D.11 or we are
done with this application of Lemma D.11. Note that there are at most 2(D

2) ≤ D2

possibilities for this.

If there is still a subset S ⊆ S∅α such that |E(S)| > |S|+η
β−2 logn(D)

, then we apply Lemma D.11 to
S and repeat this process. Otherwise, we stop.

For each j ∈N∪{0}, this gives a total of at most D2 j terms where j edges were removed.

Each such term comes with a factor of
(√

p
1−p

) j
for the removed edges.

We have the following bounds:

1. λα = n(α−1)(|V(α)|− |Uα |+|Vα |2)+(
β
2−γ)|E(α)| = n(1−α) |Uα |+|Vα |2 −

|V(α)|
2 −(1

2−α)w(α)−(γ−αβ)|E(α)|

64

2. For each of the resulting terms, letting j be the number of edges which were removed
and letting I be the set of isolated vertices after the edges are removed,

|I| ≤ (β− 2 logn(D)) j + w(S∅α) + 2 logn(D)|E(S∅α)|+ η

To see this, observe that I ⊆ S∅α as only edges in S∅α can be removed. Now consider
the set S obtained by deleting the removed edges and all vertices in I from S∅α. We
have that

|E(S∅α)| − j = |E(S)| ≤
|S|+ η

β− 2 logn(D)
=
|S∅α|+ η− |I|
β− 2 logn(D)

which implies that

|I| ≤ |S∅α|+ η− (β− 2 logn(D))(|E(S∅α)| − j)

= w(S∅α) + 2 logn(D)|E(S∅α)|+ η+ (β− 2 logn(D)) j

3. For each of the resulting terms β, letting S′ be the SMVS after the edges are removed,
w(S′) ≥ −2 logn(D)|E(S∅α)| − η. We can show this as follows. Let S′′ = S′ ∩ S∅α
and observe that w(S′′) ≤ w(S′). To see this, observe that since none of the edges in
E(S′) \E(S′′) are removed, w(S′)−w(S′′) is unaffected by removing the edges. Now
note that before the edges are removed, w(S′)−w(S′′) ≥ w(S∅α ∪ (S′ \ S′′))−w(S∅α) ≥
0.

Since S′′ ⊆ S∅α, we have that after the edges are removed, |E(S′′)| ≤ |S′′|+η
β−2 logn(D)

which

implies that w(S′′) ≥ −2 logn(D)|E(S′′)| − η ≥ −2 logn(D)|E(S∅α)| − η.

Putting these bounds together, using the bounds that |E(S∅α)| ≤ |E(α)| and w(S∅α) ≤
min {0, w(α)}, and observing that removing vertices and/or edges from a shape α can
only reduce Badjust(α), we have that

λα ∥Mα∥
Badjust(α)

≤ λα

|E(α)|∑
j=0

(
D2

√
p

1− p

) j

n
|V(α)|+|I|−w(S′)

2

≤ n(1−α) |Uα |+|Vα |2 −
|V(α)|

2 −(1
2−α)w(α)−(γ−αβ)|E(α)|n

|V(α)|+2 logn(D)|E(S∅α)|+η
2

|E(α)|∑
j=0

(
D2

√
p

1− p

) j

n
(β−2 logn(D)) j+w(S∅α)+2 logn(D)|E(S∅α)|+η

2

≤ n(1−α) |Uα |+|Vα |2 −(γ−αβ)|E(α)|
|E(α)|∑
j=0

(
D2

√
p

1− p

) j

n
(β−2 logn(D)) j

2 +2 logn(D)|E(α)|+η

≤ 2n(1−α) |Uα |+|Vα |2 +η−(γ−αβ−3 logn(D))|E(α)|

65

To prove the second statement, we split into cases based on whether w(Vσ) is non-negative.
For the case where w(Vσ) < 0, we follow the same procedure as before. We let S∅σ be a
set of vertices of σ which minimizes w(S∅σ). As long as there is a subset S ⊆ S∅σ such that
|E(S)| > |S|+η

β−2 logn(D)
, we apply Lemma D.11 to S. For each j ∈N∪ {0}, this gives a total of at

most D2 j terms where j edges were removed where each such term comes with a factor of(√
p

1−p

) j
for the removed edges. For each such term, letting I be the set of isolated vertices

and letting S′ be the new SMVS, we have the same bounds as before:

1. |I| ≤ (β− 2 logn(D)) j + w(S∅σ) + 2 logn(D)|E(S∅σ)|+ η

2. w(S′) ≥ −2 logn(D)|E(S∅α)| − η

To bound λσ, we observe that

λσ = n(1−α) |Uσ |+|Vσ |2 −
|V(σ)|

2 −(1
2−α)w(σ)−(γ−αβ)|E(σ)|

= n(1−α) |Uσ |2 −
|V(σ)|

2 + 1−α
2 w(Vσ)+(

β
2−αβ)|E(Vσ)|−(

1
2−α)w(σ)−(γ−αβ)|E(σ)|

Using the bound that w(Vσ) ≤ |Uσ|+ w(S∅σ) ≤ DSoS + w(S∅σ), we have that

λσ ≤ n(1−α)DSoS−
|V(σ)|

2 + 1−α
2 w(S∅σ)+(

β
2−αβ)|E(Vσ)|−(

1
2−α)w(σ)−(γ−αβ)|E(σ)|

Putting these bounds together, using the bounds that |E(S∅σ)| ≤ |E(σ)| and w(S∅σ) ≤
min {0, w(σ)}, and observing that removing vertices and/or edges from a shape σ can only
reduce Badjust(σ), we have that

λσ||Mσ||
Badjust(σ)

≤ λσ

|E(σ)|∑
j=0

(
D2

√
p

1− p

) j

n
|V(σ)|+|I|−w(S′)

2

≤ n(1−α)DSoS−
|V(σ)|

2 + 1−α
2 w(S∅σ)+(

β
2−αβ)|E(Vσ)|−(

1
2−α)w(σ)−(γ−αβ)|E(σ)|n

|V(σ)|+2 logn(D)|E(S∅σ)|+η
2

|E(σ)|∑
j=0

(
D2

√
p

1− p

) j

n
(β−2 logn(D)) j+w(S∅σ)+2 logn(D)|E(S∅σ)|+η

2

≤ n(1−α)DSoS+(
β
2−αβ)|E(Vσ)|−(γ−αβ)|E(σ)|

|E(σ)|∑
j=0

(
D2

√
p

1− p

) j

n
(β−2 logn(D)) j

2 +2 logn(D)|E(σ)|+η

≤ 2n(1−α)DSoS+η+(
β
2−αβ)|E(Vσ)|−(γ−αβ−3 logn(D))|E(σ)|

For the case when w(Vσ) ≥ 0, we again observe that

λσ = n(1−α) |Uσ |2 −
|V(σ)|

2 + 1−α
2 w(Vσ)+(

β
2−αβ)|E(Vσ)|−(

1
2−α)w(σ)−(γ−αβ)|E(σ)|

66

Since w(σ) ≥ w(Vσ) ≥ 0 and w(Vσ) ≤ |Uσ| ≤ DSoS ,

λσ ≤ n(1−α)DSoS−
|V(σ)|

2 +(
β
2−αβ)|E(Vσ)|−(γ−αβ)|E(σ)|

Since ||Mσ|| ≤ Badjust(σ)n
|V(σ)|−w(S)

2 ≤ Badjust(σ)n
|V(σ)|

2 , we have that

λσ||Mσ|| ≤ Badjust(σ)n(1−α)DSoS+η+(
β
2−αβ)|E(Vσ)|−(γ−αβ)|E(σ)| .

Using the forthcoming notation of Appendix E.1, we deduce the following norm
bounds for left shapes.

Corollary D.12. With the conditioning, for all U ∈ Imid and all σ ∈ LU,≤DV ,

λσ− ||Mσ− || ≤ 2Badjust(σ)n(1−α)DSoS+η−(
β
2−3 logn(DV))|E(U)|−(γ−αβ−3 logn(DV))|E(σ)\E(U)| .

Proof. By Theorem D.10,

λσ||Mσ|| ≤ 2Badjust(σ)n(1−α)DSoS+η+(
β
2−αβ)|E(U)|−(γ−αβ−3 logn(D))|E(σ)|

We now observe that

λσ− ||Mσ− || ≤
(√

p
1− p

)|E(U)|

n(γ−
β
2)|E(U)|λσ||Mσ|| = n(γ−β)|E(U)|λσ||Mσ||

where we remove the indicators from Vσ for the purpose of bounding ||Mσ||. Combining
these bounds gives the result.

Corollary D.13. With the conditioning, for all U ∈ Imid and all σ ∈ LU,≤DV ,

λσ− ||Mσ− ||
√
λU||MU|| ≤ 2Badjust(σ)nDSoS+η−

ε
2 DSoS−

ε
8 |E(σ)|−

ε
8 |V(σ)|

Proof. By Corollary D.12,

λσ− ||Mσ− || ≤ 2Badjust(σ)n(1−α)DSoS+η−(
β
2−3 logn(DV))|E(U)|−(γ−αβ−3 logn(DV))|E(σ)\E(U)|

Since
√
λU||MU|| = n(

β
2−
γ
2)|E(U)|, using the fact that |E(σ)| ≥ |V(σ) \Uσ|, we have that

λσ− ||Mσ− ||
√
λU||MU|| ≤ 2Badjust(σ)n(1−α)DSoS+η−(

γ
2−3 logn(DV))|E(U)|−(γ−αβ−3 logn(DV))|E(σ)\E(U)|

≤ 2Badjust(σ)nDSoS+η−
ε
2 DSoS−

ε
8 |E(σ)|−

ε
8 |V(σ)|

as needed.

67

E Formal Approximate PSD Decomposition

E.1 Starting point for the approximate PSD decomposition

In this section, we show that with high probability, the pseudo-calibrated moment matrix
Λ (formally defined in Section 2.9) is PSD. We do this by giving an approximate PSD
factorization for Λ. We will then show that the error is PSD dominated by the terms in
this approximate PSD factorization. For this approximate PSD factorization, we use much
of the technical framework of [PR20] (although we cannot formally apply the machinery
there because it does not work well for sparse random graphs, nor does it incorporate the
PMVS idea).

Definition E.1 (Imid). Let Imid be the set of shapes of separators of S. In other words, Imid is the
set of diagonal shapes α such that V(α) = Uα = Vα and |V(α)| ≤ DV.

Definition E.2 (L andLU andLU,≤D). LetL be the set of left shapes in S. Given U ∈ Imid and
D ∈ N, we define LU to be the set of all left shapes σ ∈ S such that Vσ = U. The set LU,≤D also
requires |V(σ)| ≤ D.

Definition E.3 (M andMU,V andMU,V,≤D). LetM be the set of middle shapes in S. Given
D ∈ N and U, V ∈ Imid (which may intersect), we define MU,V to be the set of middle shapes
τ ∈ S such that Uτ = U and Vτ = V. The setMU,V,≤D also requires |V(τ)| ≤ D.

Remark E.4. Due to the size constraints on shapes in S, we only have shapes with at most DV
vertices. We will sometimes write LU,≤DV instead of the equivalent LU when it is relevant to the
current section. Since all of the shapes we will consider have an SMVS with weight at most DSoS,
we only consider U ∈ Imid such that w(U) ≤ DSoS.

Definition E.5 (Tτ and Tτ,≤D1,≤D2). Given a shape τ (which may or may not be proper), we
define Tτ to be the set of triples of ribbons (R1, R2, R3) such that

(i) R2 has shape τ.

(ii) R1 is a left ribbon and R3 is a right ribbon.

(iii) R1, R2, R3 are properly composable.

(iv) The edges and edge indicators agree on BR1 = AR2 and BR2 = AR3 .

(v) R1, R3 have no edge indicators outside of BR1 = AR2 and BR2 = AR3 .

Tτ,≤D1,≤D2 additionally requires that |V(R1)| ≤ D1, |V(R3)| ≤ D2.

Definition E.6 (R(α)). Given a shape α, we define R(α) to be the set of ribbons R which have
shape α.

68

Definition E.7 (Minus abbreviation). Given a left ribbon L, let L− = L \ E(BL). Given a right
ribbon R, let R− = R \ E(AR). The notation is defined similarly for shapes.

Definition E.8 (U ∼ V). Given U, V ∈ Imid, we write U ∼ V if |U| = |V|, |E(U)| = |E(V)|, U
and V have the same edges on the vertex set U ∩V, and U and V have the same order on U ∩V.

Starting from the pseudocalibrated formula for Λ and incorporating this notation, we
have the following lemma.

Lemma E.9.

Λ =
∑

U,V∈Imid:
U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∑
R1,R2,R3∈Tτ,≤DV ,≤DV

λR−1 ◦R2◦R−3
MR−1 ◦R2◦R−3

− truncation1

where truncation1 is defined in Definition E.10.

Proof. Starting from Λ =
∑

R∈S λRMR, we apply Proposition 2.33 to factor R into a left,
middle, and right ribbon. We symmetrize over all choices of the order for the leftmost
SMVS U and the rightmost SMVS V such that the permutation on U ∩V is the identity
permutation. There are exactly |U|!|V|!

|U∩V|! such choices for the orders. By Proposition A.4,

U ∼ V and |U|!|V|!
|U∩V|! =

(|U|!)2

|U∩V|! . Therefore,

Λ =
∑

U,V∈Imid:
U∼V

∑
σ∈LU
τ∈MU,V
σ′∈LV :

|V(σ−◦τ◦(σ′⊺)−)|≤DV

∑
R1∈R(σ)
R2∈R(τ)

R3∈R(σ′⊺):
R1,R2,R3 properly composable

|U ∩V|!
(|U|!)2 λR−1 ◦R2◦R−3

MR−1 ◦R2◦R−3

The condition |V(σ− ◦ τ ◦ (σ′⊺)−)| ≤ DV arises because the size of the entire ribbon
R = R−1 ◦R2 ◦R−3 is bounded by DV. We would like instead that the sizes of the individual
pieces R1, R2, R3 are bounded separately by DV. The difference between these two consists
only of very large ribbons, which we will bound as a truncation error.

Definition E.10 (truncation1).

truncation1 =
∑

U,V∈Imid:
U∼V

|U ∩V|!
(|U|!)2

∑
σ∈LU,≤DV
τ∈MU,V,≤DV
σ′∈LV,≤DV :

|V(σ−◦τ◦(σ′⊺)−)|>DV

λσ−◦τ◦(σ′⊺)−Mσ−◦τ◦(σ′⊺)−

|Aut(σ− ◦ τ ◦ (σ′⊺)−)|

69

We have grouped truncation1 into shapes. In terms of ribbons, by Proposition A.3,

truncation1 =
∑

U,V∈Imid:
U∼V

|U ∩V|!
(|U|!)2

∑
σ∈LU
τ∈MU,V
σ′∈LV :

|V(σ−◦τ◦(σ′⊺)−)|>DV

∑
R∈R(σ−◦τ◦(σ′⊺)−)

λRMR

=
∑

U,V∈Imid:
U∼V

|U ∩V|!
(|U|!)2

∑
σ∈LU
τ∈MU,V
σ′∈LV :

|V(σ−◦τ◦(σ′⊺)−)|>DV

∑
R1∈R(σ)
R2∈R(τ)

R3∈R(σ′⊺):
R1,R2,R3 properly composable

λR−1 ◦R2◦R−3
MR−1 ◦R2◦R−3

Continuing the calculation,

Λ+ truncation1 =
∑

U,V∈Imid:
U∼V

|U ∩V|!
(|U|!)2

∑
σ∈LU
τ∈MU,V
σ′∈LV

∑
R1∈R(σ)
R2∈R(τ)

R3∈R(σ′⊺):
R1,R2,R3 properly composable

λR−1 ◦R2◦R−3
MR−1 ◦R2◦R−3

=
∑

U,V∈Imid:
U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∑
R1,R2,R3∈Tτ,≤DV ,≤DV

λR−1 ◦R2◦R−3
MR−1 ◦R2◦R−3

as desired.

E.2 Interaction patterns

In order to analyzeΛ, we use the procedure in Section 3 as described by interaction patterns.
These generalize intersection patterns (Definition 2.36) to account for the additional ways
that shapes can interact in the recursion.

Definition E.11 (PMVS interaction, implicit definition). Given composable shapes γ, τ,γ′⊺

such that E(Vγ) = E(Uτ) and E(Vτ) = E(Uγ′⊺), let PPMVS
γ,τ,γ′⊺ be the set of possible choices for one

iteration of the Finding PMVS subroutine (Section 3.2, note that this includes the Removing
middle edge indicators operation) run on ribbons R1, R2, R3 of shapes γ, τ,γ′⊺.

Definition E.12 (Intersection term interaction, implicit definition). Given composable shapes
γ, τ,γ′⊺ such that E(Vγ) = E(Uτ) and E(Vτ) = E(Uγ′⊺), let Pintersect

γ,τ,γ′⊺ be the set of possible
choices for the Intersection term decomposition operation followed by the Removing middle
edge indicators operation (Section 3.3) run on ribbons R1, R2, R3 of shapes γ, τ,γ′⊺.

Definition E.13 (Interaction pattern). Let Pinteract
γ,τ,γ′⊺ = PPMVS

γ,τ,γ′⊺ ∪P
intersect
γ,τ,γ′⊺ .

70

Definition E.14 (PMVS interaction, explicit definition). Given composable shapes γ, τ,γ′⊺

such that E(Vγ) = E(Uτ) and E(Vτ) = E(Uγ′⊺), a PMVS interaction pattern P ∈ PPMVS
γ,τ,γ′⊺

consists of:

(i) For each edge in E(Uτ)∪E(Vτ)which does not yet have an edge indicator, we specify whether
the edge is given an indicator or is removed,

(ii) For each edge in E(Uτ) ∪ E(Vτ) which is now in the middle of γ− ◦ τ ◦ (γ′⊺)−, we specify
whether the edge is kept or removed when the indicator is removed.

We furthermore have the structural property of P with γ, τ,γ′⊺ that after the edges have been
removed from Vγ = Uτ and Vτ = Uγ′⊺ in the first step, Uγ is the leftmost SMVS for γ and Vγ′⊺
is the rightmost SMVS for γ′⊺.

Definition E.15 (Intersection term interaction, explicit definition). Given composable shapes
γ, τ,γ′⊺ such that E(Vγ) = E(Uτ) and E(Vτ) = E(Uγ′⊺), an intersection term interaction
pattern P ∈ Pintersect

γ,τ,γ′⊺ consists of:

(i) An intersection pattern between γ−, τ, (γ′⊺)−

(ii) After these intersections, some edges appear with multiplicity greater than 1. For each such
edge, we linearize it and specify whether we are taking the term with an edge, or the constant
term.

(iii) For each edge indicator in E(Uτ)∪ E(Vτ) which is now in the middle of γ− ◦ τ ◦ (γ′⊺)−, we
specify whether the edge is kept or removed when the indicator is removed.

We furthermore have the structural property of P with γ, τ,γ′⊺ that Uγ is the leftmost SMVS in
γ of Uγ and Vγ ∪Vintersected(γ), and Vγ′⊺ is the rightmost SMVS in γ′⊺ of Uγ′⊺ ∪Vintersected(γ

′)
and Vγ′⊺ .

Definition E.16 (τP). Given an interaction pattern P ∈ Pinteract
γ,τ,γ′⊺ , let τP be the resulting shape.

Definition E.17 (N(P), implicit definition). Given γ, τ,γ′⊺ and an interaction pattern P ∈
P

interact
γ,τ,γ′⊺ , we define N(P) so that for each ribbon R of shape τP, N(P) is the number of triples of

ribbons R1, R2, R3 of shapes γ, τ,γ′⊺ which result in the ribbon R through interaction pattern P.

N(P) > 1 holds when there is an increase in symmetry in an interaction term.

Definition E.18 (cP, implicit definition). Given an interaction pattern P ∈ Pinteract
γ,τ,γ′⊺ , we define

cP such that N(P)cPλτP is the coefficient on a resulting ribbon R of shape τP.

Following the analysis in Claim 4.17, Claim 4.23, we have the following explicit
formulas for cP.

71

Definition E.19 (cP, explicit definition). Given an interaction pattern P ∈ Pinteract
γ,τ,γ′⊺ ,

1. If P is a PMVS interaction,

cP = (n−γ)(total # of removed edges)
(−1)# of edges removed from Uτ∪Vτ for not being in E(G)(

1
1− p

)(# of new edge indicators)

(1− p)# of edges and edge indicators removed from the middle

2. If P is an intersection term interaction,

cP =

(
k
n

)(# of intersections)
 ∏

e∈Etot(τP)

 q− p√
p(1− p)

mult(e)−1+1e vanishes
 1− 2p√

p(1− p)

(mult(e)−2)1e vanishes

 1− 2p√
p(1− p)

1mult(e)=2,e does not vanish or have an indicator

√

1− p
p

1mult(e)=2,e has an indicator

(
1− 3p + 3p2

p(1− p)

)1mult(e)=3,e does not vanish

· (1− p)(# of edges and edge indicators removed from the middle) (q− p)(# of edges removed from the middle)

Lemma E.20.

|cP| ≤
(
nα−1

)(# of intersections)
 ∏

e∈Etot(τP)

(
n
β
2−γ

)mult(e)−1+1e vanishes
(
n
β
2

)mult(e)−1−1e vanishes

· (1− p)# of edges and edge indicators removed from the middle (n−γ)(# of edges removed from the middle)

Proof. This may be proven either directly from the exact formula above, or by the analysis

already presented in Claim 4.23. From the above, note that 1−2p
√

p(1−p)
≤

√
1−p

p = n−
β
2 . Note

that 1−3p+3p2

p(1−p) ≤
1−p

p = n−
β
2 as p ≤ 1

2 .

Definition E.21 (c≈P). Define c≈P to be the polynomial factors in cP, namely

c≈P =
(
nα−1

)(# of intersections)
 ∏

e∈Etot(τP)

(
n
β
2−γ

)mult(e)−1+1e vanishes
(
n
β
2

)mult(e)−1−1e vanishes

· (n−γ)(# of edges removed from the middle)

72

E.3 The approximate PSD decomposition

Applying the recursion as described in Section 3 with the definitions from the previous
section, we obtain the approximate PSD decomposition as follows. The proofs essentially
follow from the definitions and are delayed to Appendix E.3.1.

Definition E.22 (Plus abbreviation). Given a shape τ, let τ+ denote the improper shape with
left and right edge indicators added to Uτ and Vτ.

Definition E.23 (Terminal interaction). P ∈ PPMVS
γ,τ,γ′⊺ is a terminal PMVS interaction if all edges

are given indicators (none are removed). P ∈ Pintersection
γ,τ,γ′⊺ is a terminal intersection interaction if

there are no intersections.

Lemma E.24 (One iteration, PMVS operation). For all shapes τ and D1, D2 ∈N,∑
(R1,R2,R3)∈Tτ,≤D1,≤D2

λR−1 ◦R2◦R−3
MR−1 ◦R2◦R−3

=
∑

(R1,R2,R3)∈Tτ,≤D1,≤D2

(
1

1− p

)(# of new edge indicators)

λR−1 ◦R2◦R−3
MR−1 ◦R

+
2 ◦R

−

3

+
∑

γ∈LUτ,≤D1 ,γ′∈LVτ,≤D2

∑
non-terminal
P∈PPMVS

γ,τ,γ′⊺

N(P)cP

|Uγ|!|Vγ′⊺ |!

∑

(R′1,R′2,R′3)∈TτP,≤D′1,≤D′2

λR′1
−
◦R′2◦R

′

3
−MR′1

−
◦R′2◦R

′

3
−

where D′1 = D1 − |V(γ) \Uγ| and D′2 = D2 − |V(γ′⊺) \Vγ′⊺ |

Definition E.25 (L and LU and LU,≤D). Let L =
∑

L∈L λL−ML− and LU =
∑

L∈LU
λL−ML− and

LU,≤D =
∑

L∈LU,≤D
λL−ML− .

Lemma E.26 (One iteration, intersection term operation). For all shapes τ and D1, D2 ∈N,∑
(R1,R2,R3)∈Tτ,≤D1,≤D2

λR−1 ◦R2◦R−3
MR−1 ◦R

+
2 ◦R

−

3
= LUτ,≤D1

(
λτMτ+

|Aut(τ)|

)
L⊺Vτ,≤D2

−

∑
γ∈LUτ,≤D1 ,γ′∈LVτ,≤D2

∑
non-terminal
P∈Pintersect

γ,τ+ ,γ′⊺

N(P)cP

|Uγ|!|Vγ′⊺ |!

∑

(R′1,R′2,R′3)∈TτP,≤D′1,≤D′2

λR′1
−
◦R′2◦R

′

3
−MR′1

−
◦R′2◦R

′

3
−

where D′1 = D1 − |V(γ) \Uγ| and D′2 = D2 − |V(γ′⊺) \Vγ′⊺ |

We repeatedly apply Lemma E.24 until we have only terms with PMVS identified
(i.e. having both left and right indicators), then we apply Lemma E.26, then we repeat

73

Lemma E.24, and so forth. The next lemma gives the formal statement of the final result
of the iteration on Λ.

We define iterated interaction patterns, which are the combinatorial objects describing
the branches of the full recursion.

Definition E.27 (Iterated interaction pattern,P j(τ)). Given a shape τ and j ∈N, defineP j(τ)
to be the set of tuples (Γ, Γ′⊺, P) such that

1. Γ is a tuple of j composable left shapes (γ j, . . . ,γ1). Let γ = γ−j ◦ · · · ◦ γ
−

2 ◦ γ1.

2. Γ′⊺ is a tuple of j composable right shapes (γ′⊺1 , . . . ,γ′⊺j). Let γ′⊺ = γ′⊺1 ◦ (γ
′⊺
2)− · · · ◦

(γ′⊺j)−.

3. P is a tuple of j interaction patterns (P1, . . . , P j) such that for each i ∈ [j], Pi ∈ P
interact
γi,τPi−1 ,γ′⊺i

.

For i = 1, we take τP0 = τ.

4. P consists of sequences of non-terminal PMVS interactions ending with a terminal PMVS
interaction (there is at least one sequence), with a non-terminal intersection interaction in
between consecutive sequences, then finally ending with a terminal intersection interaction.

5. P has at least one non-terminal interaction (we will explicitly separate the middle shapes i.e.
the terms with a terminal PMVS interaction followed by a terminal intersection interaction
because they are a good warm-up for the analysis of the other terms).

We use τP = τP j to denote the final resulting shape.

Definition E.28 (DL(P) and DR(P)). Define DL(P) = DV − |V(γ) \Uγ| and
DR(P) = DV − |V(γ′⊺) \Vγ′⊺ |.

Lemma E.29 (Result of full iteration).

Λ =
∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2 LU,≤DV

 ∑
τ∈MU,V

(
1

1− p

)|E(Uτ)∪E(Vτ)| λτMτ+
|Aut(τ)|

 L⊺V,≤DV

+
∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!

LUτP ,≤DL(P)

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺
VτP ,≤DR(P)

− truncation1

74

Remark E.30. The dominant terms in the decomposition are

∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2 LU,≤DV

∑

τ∈MU,V :
τ diagonal

(
1

1− p

)|E(Uτ)∪E(Vτ)| λτMτ+
|Aut(τ)|

 L⊺V,≤DV

=
∑

U∈Imid

(
1

1− p

)|E(U)|
λU

|U|!
LU,≤DV MU+L⊺U,≤DV

⪰

∑
U∈Imid

λU

|U|!
LU,≤DV MU+L⊺U,≤DV

.

We will show that all of the remaining terms are PSD dominated by these terms.

E.3.1 Proofs of Lemma E.24 and Lemma E.26

Proof of Lemma E.24. For a ribbon R−1 ◦R2 ◦R−3 on the left-hand side, let Emissin1(R2) be the
set of edges in E(AR2) ∪ E(BR2) which do not yet have indicators. We update the single
nonzero entry of MR−1 ◦R2◦R−3

using the identity

∏
e∈Emissin1(R2)

 q− p√
p(1− p)

χe

 = ∏
e∈Emissin1(R2)

 1
1− p

1e∈E(G)

q− p√
p(1− p)

χe −
q− p
1− p

 .

Note that n−γ = q−p
1−p . Expanding this identity,∑

(R1,R2,R3)∈Tτ,≤D1,≤D2

λR−1 ◦R2◦R−3
MR−1 ◦R2◦R−3

=
∑

(R1,R2,R3)∈Tτ,≤D1,≤D2

∑
E1⊆Emissin1(R2)

(
1

1− p

)|Emissin1(R2)|−|E1|

(−n−γ)|E1| λR−1 ◦(R2\E1)+◦R−3
MR−1 ◦(R2\E1)+◦R−3

The term choosing 1
1−p1e∈E(G)χe for all e (i.e. E1 = ∅) is the terminal interaction and

yields MR−1 ◦R
+
2 ◦R

−

3
.

For the other E1 terms, we refactor using the new SMVS,

R−1 ◦ (R2 \ S)+ ◦R−3 = R′−1 ◦R′2 ◦R′−3

Define G1 and G⊺3 by R1 = R′−1 ◦G1 and R3 = G⊺3 ◦R′−3 . Recall that we need to specify the
orders of AG1 and BG⊺3

. We symmetrize over all |AG1 |!|BG⊺3
|! possible choices.

75

At this point, we may have edge indicators in the middle of G−1 ◦ (R2 \ E1)
+
◦ (G⊺3)

−.
Letting Eextra be the set of edges in the middle of G−1 ◦ (R2 \ E1)

+
◦ (G⊺3)

−,∏
e∈Eextra

1e∈E(G)

q− p√
p(1− p)

χe

 = ∏
e∈Eextra

(1− p)
q− p√
p(1− p)

χe + (q− p)

Note that (q− p) = (1− p)n−γ. Expanding this product out, we let E2 be the set of edges
where we choose the (1− p)n−γ term. After doing this, we set

R′2 = G−1 ◦ (R2 \ (E1 ∪ E2))
+
◦ (G⊺3)

−

We replace the summation over (R1, R2, R3) ∈ Tτ,≤D1,≤D2 by a summation over (R′1, G1, R2, G⊺3 , R′3).
We crucially have that R′2 does not depend on R′1 or R′3, Remark 3.7. Therefore, we first
sum over (G1, R2, G⊺3), E1 ⊆ Emissin1(R2), and E2 ⊆ Eextra(G−1 ◦ (R2 \E1)

+
◦ (G⊺3)

−) and then
sum over R′1 and R′3. R2 is a ribbon of shape τ, G1 and G⊺3 are arbitrary left and right
ribbons which match the left and right sides of R2, and together there is the additional
structural property that

AG1 is the leftmost SMVS of G1,
BG⊺3

is the rightmost SMVS of G⊺3 , (∗)

In summary,∑
(R1,R2,R3)∈Tτ,≤D1,≤D2

∑
E1⊆Emissin1(R2)

(
1

1− p

)|Emissin1|−|E1|

(−n−γ)|E1| λR−1 ◦(R2\E1)+◦R−3
MR−1 ◦(R2\E1)+◦R−3

=
∑

R2∈Rτ

∑
S⊆Emissin1(R2)

∑
G1∈LAR2

,≤D1 ,

G3∈LBR2
,≤D2 :

(*) holds

∑
E2⊆Eextra(G−1 ◦(R2\E1)+◦(G

⊺
3)
−)

1
|AG1 |!|BG⊺3

|!

(
1

1− p

)|Emissin1|−|E1|

(1− p)|Eextra|(−1)|E1| (n−γ)|E1|+|E2|
∑

R′1∈LAG1
,≤D1−|V(G1)\AG1

|,

R′3∈LBG⊺3
,≤D2−|V(G⊺3)\BG⊺3

|

λR′−1 ◦R
′

2◦R
′−

3
MR′−1 ◦R

′

2◦R
′−

3

Finally, we prepare to shift from ribbons to shapes. Fixing the shape γ of G1 and γ′⊺ of
G⊺3 , the sum over S ⊆ Emissin1(R2) and the condition (*) is equivalent to summing over
P ∈ PPMVS

γ,τ,γ′⊺ . Summing over R′2 with the final shape τP specified by P, the sum over
R′1, R′2, R′3 is equivalent to summing over TτP,D′1,D′2

. The coefficients are gathered into
N(P)cP. In summary, the above is equal to

∑
γ∈LUτ,≤D1 ,
γ′∈LVτ,≤D2

∑
P∈PPMVS

γ,τ,γ′⊺

N(P)cP

|Uγ|!|Vγ′⊺ |!

∑

(R′1,R′2,R′3)∈TτP,≤D1−|V(γ)\Uγ |,≤D2−|V(γ′⊺)\Vγ′⊺ |

λR′1
−
◦R′2◦R

′

3
−MR′1

−
◦R′2◦R

′

3
−

76

as needed.

Proof sketch of Lemma E.26. This follows in the same way as the previous lemma.

We have that LUτ,≤D1

(
λτMτ
|Aut(τ)|

)
L⊺Vτ,≤D2

is a sum over left, middle, and right ribbons

respectively, where the sum over middle ribbons is over distinct ribbons due to normal-
ization by |Aut(τ)|, Proposition A.3. We will argue that each R = R−1 ◦ R2 ◦ R−3 has the
same coefficient on both sides of the equality.

Suppose R = R−1 ◦ R2 ◦ R−3 where R1, R2, R3 are properly composable. This term
appears on the left-hand side with coefficient λR−1 ◦R2◦R−3

. The coefficient factors into
λR−1
λR2λR−3

by Lemma 2.48. Hence these terms match up.

We now consider R−1 ◦ R2 ◦ R−3 which is an improper composition. These don’t occur
on the left, hence we would like to show that they cancel on the right. R1, R2, R3 give rise
to an intersection pattern P ∈ Pintersect

γ,τ,γ′⊺ where γ,γ′⊺ are defined in Definition 4.21.

In order to specify R1, R2, R3 and the interaction pattern P, the latter sum instead
specifies R′1, R′2, R′3 in TτP,≤D′1,≤D2 along with the orderings of Uγ, V⊺γ′ . There are |Uγ|!
choices for the order of Uγ and |Vγ′⊺ |! choices for the order of Vγ′⊺ , and we symmetrize
over all choices. There may be multiple ribbons R1, R2, R3 leading to the same ribbon
R−1 ◦R2 ◦R−3 even with the same intersection pattern, and this is accounted for by N(P).

The change in coefficient can be analyzed as follows:

1. For each intersection, there is a factor of n(α−1) coming from the λ coefficients which
needs to be shifted to cP.

2. For each edge e ∈ Etot(τP), there is a factor of
(

q−p
√

p(1−p)

)mult(e)−1+1e vanishes

coming from

the λ coefficients which needs to be shifted to cP.

3. χe
2 = 1 + 1−2p

√
p(1−p)

χe.

4. χe
3 =

(
1 + 1−2p
√

p(1−p)
χe

)
χe =

1−2p
√

p(1−p)
+

1−3p+3p2

p(1−p) χe. Note that because only three

ribbons are being composed, the maximum multiplicity of a multiedge is 3.

5. The edge indicators and edges which are removed from the middle can be analyzed
in the same way as before.

This change is accounted for by cP. This completes the proof.

E.4 Analyzing Λ

First we factor out the truncation error from Λ.

77

Lemma E.31.

Λ =
∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2 LU

 ∑
τ∈MU,V

(
1

1− p

)|E(Uτ)∪E(Vτ)| λτMτ+
|Aut(τ)|

 L⊺V

+
∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!

LUτP

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺VτP

− truncation1 + truncation2

where truncation2 is defined in Definition E.32.

Proof. Starting from Lemma E.29, for each interaction term τ, j, (Γ, Γ′⊺, P), we use

LUτP ,≤DL(P)

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺
VτP ,≤DR(P)

= LUτP ,≤DV

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺VτP ,≤DV

+
(
LUτP ,≤DL(P) − LUτP ,≤DV

)
(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺VτP ,≤DV

+ LUτP ,≤DL(P)

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 (L⊺VτP ,≤DR(P)
− L⊺VτP ,≤DV

)
The first term has LUτP ,≤DV = LUτP

and LVτP ,≤DV = LVτP
as needed. The second and third

terms are collected into truncation2. The following definition completes the proof of the
lemma.

Definition E.32 (truncation2).

truncation2 =
∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!(LUτP ,≤DL(P) − LUτP ,≤DV

)
(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺VτP ,≤DV

78

+ LUτP ,≤DL(P)

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 (L⊺VτP ,≤DR(P)
− L⊺VτP ,≤DV

)
We would now like to analyze the non-truncation terms. As we proved in Section 4,

the norm of each individual shape ∥Mτ∥ and
∥∥∥MτP

∥∥∥ is under control. In order to sum over
all the shapes, we use combinatorial functions to convert the sum into a max.

The idea is as follows. If we have a sum of the form
∑
α B(α) where B(α) is non-

negative then instead of bounding the sum directly, we can choose a relatively simple
function c(α) such that

∑
α

1
c(α) ≤ 1 and observe that

∑
α

B(α) =
∑
α

1
c(α)

c(α)B(α) ≤
∑
α

1
c(α)

max
α
{c(α)B(α)} ≤ max

α
{c(α)B(α)}

This allows us to use our bound on the individual terms.

Definition E.33 (c(α) and c(P), informal version of Definition E.42).

1. For shapesα, c(α) is used to control the number of shapes we are summing over. In particular,
we have that for all U ∈ Imid,

∑
shapes α:Uα=U,α is non-trivial

1
|Uα∩Vα|!c(α)

≤ 1. Similarly, for all

V ∈ Imid,
∑

shapes α:Vα=V,α is non-trivial
1

|Uα∩Vα|!c(α)
≤ 1.

2. For intersection patterns P, c(P) is used to control the number of interaction patterns we are
summing over. In particular, for all γ, τ, and γ′⊺,

∑
P∈Pinteract

γ,τ,γ′⊺
1

c(P) ≤ 1.

The formal definitions are given in Appendix E.5, where we will verify that they
satisfy the stated summation property and also Bound C.1.

With the combinatorial functions in hand, we can bound non-square terms by the
square terms

{
LUMU+L⊺U : U ∈ Imid

}
as follows. Corollary E.34 applies to middle shapes

and Corollary E.35 applies to intersection terms. The proofs are delayed to the next
subsection.

Corollary E.34. For n sufficiently large,

∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2 LU

 ∑
τ∈MU,V :τ is non-diagonal

(
1

1− p

)|E(Uτ)∪E(Vτ)| λτMτ+
|Aut(τ)|

 L⊺V

⪰ −
1
4

∑
U∈Imid

λU

|U|!
LUMU+L⊺U

79

Corollary E.35. For n sufficiently large,

∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!

LUτP

(∏ j

i=1 cPiN(Pi)
)
λτPMτP

|Aut(τP)|

 L⊺VτP

⪰ −
1
4

∑
U∈Imid

λU

|U|!
LUMU+L⊺U

Putting together Corollary E.34 and Corollary E.35 with Lemma E.31, we have

Lemma E.36. For n sufficiently large,

Λ ⪰
1
2

∑
U∈Imid

1
|U|!
λULUMU+L⊺U − truncation1 + truncation2 .

The remaining tasks to prove Λ ⪰ 0 are to verify Bound C.1, and to analyze the
truncation error, which we carry out in the following sections.

E.4.1 Proofs of Corollary E.34 and Corollary E.35

The building block that allows us to formally charge these shapes is the following lemma,
which lower bounds the negative impact of each individual term by “square terms”.

Lemma E.37. For all shapes τ, all D1, D2 ∈N, and all b ∈ {−1, 1},

b(LUτ,≤D1λτMτ+L⊺Vτ,≤D2
+ LVτ,≤D2λτM

⊺
τ+

L⊺Uτ,≤D1
)

⪰
−λτ||Mτ||√

λUτ

∥∥∥MUτ

∥∥∥λVτ

∥∥∥MVτ

∥∥∥(LUτ,≤D1λUτMU+
τ

L⊺Uτ,≤D1
+ LVτ,≤D2λVτMV+

τ
L⊺Vτ,≤D2

)

Proof. We claim that for all s > 0,

b(LUτ,≤D1Mτ+L⊺Vτ,≤D2
+ LVτ,≤D2M⊺

τ+
L⊺Uτ,≤D1

)

⪰ − sLUτ,≤D1(Mτ+M⊺
τ+
)1/2L⊺Uτ,≤D1

−
1
s

LVτ,≤D2(M
⊺
τ+

Mτ+)
1/2L⊺Vτ,≤D2

Writing Mτ+ = XΣY⊺ for the singular value decomposition of Mτ+ , observe that

0 ⪯
(
√

sLUτ,≤D1XΣ1/2 +
b
√

s
LVτ,≤D2YΣ1/2

) (
√

sΣ1/2X⊺L⊺Uτ,≤D1
+

b
√

s
Σ1/2Y⊺L⊺Vτ,≤D2

)
80

= sLUτ,≤D1XΣX⊺L⊺Uτ,≤D1
+

1
s

LVτ,≤D2YΣY⊺L⊺Vτ,≤D2

+ b(LUτ,≤D1XΣY⊺L⊺Vτ,≤D2
+ LVτ,≤D2YΣX⊺L⊺Uτ,≤D1

)

= sLUτ,≤D1(Mτ+M⊺
τ+
)1/2L⊺Uτ,≤D1

+
1
s

LVτ,≤D2(M
⊺
τ+

Mτ+)
1/2L⊺Vτ,≤D2

+ b(LUτ,≤D1Mτ+L⊺Vτ,≤D2
+ LVτ,≤D2M⊺

τ+
L⊺Uτ,≤D1

)

which implies the claim.

We claim (Mτ+M⊺
τ+
)1/2
⪯ ∥Mτ∥

MU+
τ

∥MUτ∥
. To see this, note that MU+

τ
is a diagonal matrix

with nonnegative entries, therefore
MU+

τ

∥MUτ∥
has diagonal entries which are 0 and 1. The

supported rows are the same as Mτ+M⊺
τ+

hence the claim.

Similarly, (M⊺
τ+

Mτ+)1/2
⪯ ∥Mτ∥

MV+
τ

∥MVτ∥
. Using these claims with s =

√
λUτ∥MUτ∥

λVτ∥MVτ∥

completes the proof.

Lemma E.38. ∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2 LU

 ∑
τ∈MU,V :τ is nontrivial

λτMτ+

|Aut(τ)|

 L⊺V

⪰ −

∑
U∈Imid

(
max

V,τ:U∼V,τ∈MU,V ,τ is nontrivial

{
c(τ)

λτ||Mτ||
λU||MU||

})
λU

|U|!
LUMU+L⊺U

Proof. Applying Lemma E.37 and using the trivial bound |Aut(τ)| ≥ 1,∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2 LU

 ∑
nontrivial τ∈MU,V

λτMτ
|Aut(τ)|

 L⊺V

⪰ −

∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

 ∑
nontrivial τ∈MU,V

λτ||Mτ||

λU ∥MU∥

(1
2

LUMU+L⊺U +
1
2

LVMV+L⊺V

)
= −

∑
U∈Imid

1
2|U|!

 ∑
V,τ:U∼V,τ∈MU,V ,τ is nontrivial

|U ∩V|!
c(τ)|U|!

c(τ)
λτ||Mτ||
λU||MU||

 LUMU+L⊺U

−

∑
V∈Imid

1
2|V|!

 ∑
U,τ:U∼V,τ∈MU,V ,τ is nontrivial

|U ∩V|!
c(τ)|U|!

c(τ)
λτ||Mτ||
λU||MU||

 LVMV+L⊺V

⪰ −

∑
U∈Imid

(
max

V,τ:U∼V,τ∈MU,V ,τ is nontrivial

{
c(τ)

λτ||Mτ||
λU||MU||

})
1
|U|!

LUMU+L⊺U

where the last line uses the following facts:

81

1. For all U ∈ Imid,
∑

V,τ:U∼V,τ∈MU,V ,τ is nontrivial
|U∩V|!
c(τ)|U|! ≤ 1

2. For all V ∈ Imid,
∑

U,τ:U∼V,τ∈MU,V ,τ is nontrivial
|U∩V|!
c(τ)|U|! ≤ 1.

Corollary E.34. For n sufficiently large,

∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2 LU

 ∑
τ∈MU,V :τ is non-diagonal

(
1

1− p

)|E(Uτ)∪E(Vτ)| λτMτ+
|Aut(τ)|

 L⊺V

⪰ −
1
4

∑
U∈Imid

λU

|U|!
LUMU+L⊺U

Proof. We observe that

max
V,τ:U∼V,τ∈MU,V ,τ is nontrivial

{
c(τ)

λτ||Mτ||
λU||MU||

}
≤ max

V,τ:U∼V,τ∈MU,V ,τ is nontrivial

{
c(τ)Badjust(τ)n− slack(τ)

}
≤

1
4

where the last inequality follows from the facts that for all τ,

1. slack(τ) ≥ ε4(|E(τ)| −
|E(Uτ)|+|E(Vτ)|

2 + |V(τ)| − |Uτ|+|Vτ|2)

2. c(τ) ≤ n
ε

16 (|E(τ)|−
|E(Uτ)|+|E(Vτ)|

2 +|V(τ)|− |Uτ |+|Vτ |2)

3. Badjust(τ) ≤ n
ε

16 (|E(τ)|−
|E(Uτ)|+|E(Vτ)|

2 +|V(τ)|− |Uτ |+|Vτ |2)

Lemma E.39.∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!

LUτP

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺VτP

⪰ −

∑
U∈Imid

max
τ∈M
j∈N+

(Γ,Γ′,P)∈P j(τ):
UτP=U

100 jc(τ)

j∏

i=1

c(γi)c(γ′i)c(Pi)cPiN(Pi)

 λτP

∥∥∥MτP

∥∥∥√
λUτP

∥∥∥MUτP

∥∥∥λVτP

∥∥∥MVτP

∥∥∥

82

λU

|U|!
LUMU+L⊺U

Proof. Applying Lemma E.37 and using the trivial bound |Aut(τP)| ≥ 1,∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!

LUτP

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺VτP

⪰ −

∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(∏ j
i=1 cPiN(Pi)

) λτP

∥∥∥MτP
∥∥∥√

λUτP

∥∥∥∥MUτP

∥∥∥∥λVτP

∥∥∥∥MVτP

∥∥∥∥∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!(1
2

LUτP
λUτP

MU+
τP

L⊺UτP
+

1
2

LVτP
λVτP

MV+
τP

L⊺VτP

)
We now show how to bound the LUτP

λUτP
MU+

τP
L⊺UτP

terms. The LVτP
λVτP

MV+
τP

L⊺VτP
terms

can be bounded by a symmetrical argument.
Grouping all of the terms where UτP = U together, we obtain that∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

1∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!
j∏

i=1

cPiN(Pi)

 λτP

∥∥∥MτP

∥∥∥√
λUτP

∥∥∥∥MU+
τP

∥∥∥∥λVτP

∥∥∥MVτP

∥∥∥LU
τ+P
λUτP

MUτP
L⊺UτP

=
∑

U∈Imid

1
|U|!

∑
τ∈M

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ):

UτP=U

|Uτ ∩Vτ|!
|Vτ|!

1∏ j
i=1 |Vγi |!|Vγ′i

⊺ |!

2 jc(τ)

j∏

i=1

c(γi)c(γ′i)c(Pi)cPiN(Pi)

 λτP

∥∥∥MτP

∥∥∥√
λUτP

∥∥∥MUτP

∥∥∥λVτP

∥∥∥MVτP

∥∥∥
 LUλUMU+L⊺U

2 jc(τ)
∏ j

i=1 c(γi)c(γ′i)c(Pi)

⪯

∑
U∈Imid

max
τ∈M
j∈N+

(Γ,Γ′,P)∈P j(τ):
UτP=U

100 jc(τ)

j∏

i=1

c(γi)c(γ′i)c(Pi)cPiN(Pi)

 λτP

∥∥∥MτP

∥∥∥√
λUτP

∥∥∥MUτP

∥∥∥λVτP

∥∥∥MVτP

∥∥∥

83

λU

|U|!
LUMU+L⊺U

where the last inequality uses the following facts to convert the sums into a maximization:

1. For all i ∈ [j],
∑
γi∈L:Uγi=Vγi+1

1
|Vγi |!c(γi)

≤ 2 where we set Vγ j+1 = U. Across all i, this

multiplies the total by 2 j.

2.
∑
τ∈M:Uτ=Vγ1

|Uτ∩Vτ|!
|Vτ|!c(τ)

≤ 2

3. For all i ∈ [j],
∑
γ′i∈LV

γ
′⊺
i−1

1
|V
γ
′⊺
i
|!c(γ′⊺i)

≤ 2. Across all i, this multiplies the total by 2 j.

4. For all i ∈ [j],
∑

Pi∈P
interact
γi,τPi−1

,γ′⊺i

1
c(Pi)
≤ 1.

5.
∑
∞

j=1
1
2 j ≤ 1.

Corollary E.35. For n sufficiently large,

∑
U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!

LUτP

(∏ j

i=1 cPiN(Pi)
)
λτPMτP

|Aut(τP)|

 L⊺VτP

⪰ −
1
4

∑
U∈Imid

λU

|U|!
LUMU+L⊺U

Proof. We need to show that

max
τ∈M
j∈N+

(Γ,Γ′,P)∈P j(τ):
UτP=U

100 jc(τ)

j∏

i=1

c(γi)c(γ′i)c(Pi)cPiN(Pi)

 λτP

∥∥∥MτP

∥∥∥√
λUτP

∥∥∥MUτP

∥∥∥λVτP

∥∥∥MVτP

∥∥∥
 ≤ 1

4

This follows from the following observations:

1.
∏ j

i=1 c≈Pi
λτP

∥∥∥MτP
∥∥∥√

λUτP

∥∥∥∥MUτP

∥∥∥∥λVτP

∥∥∥∥MVτP

∥∥∥∥ = n− slack(τP)

84

2. By the slack lower bound in Bound C.1,

slack(τP) ≥ ε

(
Etot(τP) −

|E(UτP)|+ |E(VτP)|

2
+ |Vtot(τP)| −

|UτP |+ |VτP |

2

)
= ε

(
|E(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

+ |V(τ)| −
|Uτ|+ |Vτ|

2

)
+

ε
∑
i∈[j]

|E(γi)| −
|E(Uγi)|+ |E(Vγi)|

2
+ (# of edges removed from γi)

+ |V(γi)| −
|Uγi |+ |Vγi |

2
+ |E(γ′⊺i)| −

|E(Uγ′⊺i)|+ |E(Uγ′
⊺
i
)|

2

+ (# of edges removed from γ′⊺i) + |V(γ′⊺i)| −
|Uγ′⊺i |+ |Vγ′

⊺
i
|

2

3. c(τ) ≤ n

ε
32 (|E(τ)|−

|E(Uτ)|+|E(Vτ)|
2 +|V(τ)|− |Uτ |+|Vτ |2)

4. Badjust(τP) ≤ n
ε

32 (|E(τP)|−
|E(UτP)|+|E(VτP)|

2 +|V(τP)|−
|UτP |+|VτP |

2)

5. For all i ∈ [j], c(γi)c(γ′i), c(Pi), and N(Pi) are all at most n raised to the power

ε
32

|E(γi)| −
|E(Uγi)|+ |E(Vγi)|

2
+ (# of edges removed from γi)

+ |V(γi)| −
|Uγi |+ |Vγi |

2
+ |E(γ′⊺i)| −

|E(Uγ′⊺i)|+ |E(Uγ′
⊺
i
)|

2

+ (# of edges removed from γ′⊺i) + |V(γ′⊺i)| −
|Uγ′⊺i |+ |Vγ′

⊺
i
|

2

6.

∣∣∣∣ cP
c≈P

∣∣∣∣ ≤ 2

E.5 c-function bounds

In this section we bound the various combinatorial functions.

Definition E.40 (Nshape(U, e)). Given a diagonal shape U and V ∈ N, let Nshape(U, e) be the
number of shapes α with Uα = U and e edges outside of Uα.

Remark E.41. Since the permutation of Vα can be arbitrary, Nshape(U, e) is a multiple of |Vα|!.

85

Definition E.42 (c(α), formal).

c(α) =2|E(α)\E(Uα∩Vα)| ·
1

|Uα ∩Vα|!
max

{
Nshape(Uα, |E(α) \ E(Uα)|), Nshape(Vα, |E(α) \ E(Vα)|)

}
Lemma E.43. For all diagonal shapes U,∑

shapes α:Uα=U,α non-trivial

1
|U ∩Vα|!c(α)

≤ 1

∑
shapes α:Uα=U

1
|U ∩Vα|!c(α)

≤ 2

By symmetry the same holds for the sum over α : Vα = V.

Proof. ∑
shapes α:Uα=U

1
|U ∩Vα|!c(α)

=
∞∑

e=0

∑
shapes W

∑
shapes α:Uα=U,
|E(α)\E(Uα)|=e

1
2eNshape(U, e)

=
∞∑

e=0

1
2e

= 2 .

To derive the first statement, note that the trivial shapes contribute exactly 1 to the sum.

Lemma E.44 (Bound for c(α)). For all shapes α with at most DV vertices,

c(α) ≤ 2(4DV)
2|E(α)\E(Uα∩Vα)|(2DV)

2|(Uα∪Vα)\(Uα∩Vα)|

Proof. The shapes counted by Nshape(U, e) can be generated by the following process.

1. Start from V(α) = Uα = U.

2. Run the following process to select a subset of Uα to be in Uα ∩Vα. Use a label in [2]
to decide whether or not at least one vertex is in Uα ∩Vα. If so, use a label in |Uα| to
choose the vertex, and then use a label in [2] to decide whether or not another vertex
is in Uα ∩Vα, and so forth.

3. For each edge outside E(Uα), identify each endpoint using a label in [DV], and
additionally use a label in [2] to identify whether each endpoint is in Vα.

86

4. Specify the permutation of Vα in |Vα|! ways.

In total, this is at most 2(2DV)
2|E(α)\E(Uα)|(2|Uα|)|(Uα∪Vα)\(Uα∩Vα)||Vα|!. A symmetric bound

applies to Nshape(V, e). Therefore,

c(α) ≤ 2|E(α)\E(Uα∩Vα)| ·
max{|Uα|!, |Vα|!}
|Uα ∩Vα|!

· 2(2DV)
2|E(α)\E(Uα∩Vα)|(2DV)

|(Uα∪Vα)\(Uα∩Vα)|

≤ 2|E(α)\E(Uα∩Vα)| ·D|(Uα∪Vα)\(Uα∩Vα)|
V · 2(2DV)

2|E(α)\E(Uα∩Vα)|(2DV)
|(Uα∪Vα)\(Uα∩Vα)|

= 2(4DV)
2|E(α)\E(Uα∩Vα)|(2DV)

2|(Uα∪Vα)\(Uα∩Vα)|

as needed.

Definition E.45 (NPMVS(γ, τ,γ′⊺, e)). Given shapes γ, τ,γ′⊺ and e ∈N, let NPMVS(γ, τ,γ′⊺, e)
be the number of PMVS interaction patterns such that e edges are removed from τP, either because
of the adding indicators step or the removing middle edge indicators step.

Similarly, let Nintersect(γ, τ,γ′⊺, e) be the number of intersection interaction patterns such that
e edges are removed from τP in the removing middle edge indicators step.

Definition E.46 (c(P), formal). For an interaction pattern P ∈ Pinteract
γ,τ,γ′⊺ , let c(P) = 2e+1NPMVS(γ, τ,γ′⊺, e)

if P is a PMVS interaction pattern and c(P) = 2e+2Nintersect(γ, τ,γ′⊺, e) if P is an intersection
interaction pattern, where e is the number of edges removed from τP.

Lemma E.47. For all γ, τ,γ′,
∑

P∈Pinteract
γ,τ,γ′⊺

1
c(P) ≤ 1.

Proof.

∑
P∈Pinteract

γ,τ,γ′⊺

1
c(P)

=
∞∑

e=1

∑
P∈PPMVS

γ,τ,γ′⊺
:

e edges are removed from τP

1
2e+1NPMVS(γ, τ,γ′⊺, e)

+
∞∑

e=0

∑
P∈Pintersect

γ,τ,γ′⊺
:

e edges are removed from τP

1
2e+2Nintersect(γ, τ,γ′⊺, e)

≤ 1

Lemma E.48 (Bound for c(P)). For all shapes γ, τ,γ′⊺ such that |V(γ)| ≤ DV, |V(τ)| ≤ 3DV,
and |V(γ′⊺)| ≤ DV,

1. For all PMVS interaction patterns such that e edges are removed from τP, c(P) ≤ 2(4D2
V)

e

87

2. For all intersection interaction patterns such that e edges are removed from τP,

c(P) ≤ 4(3DV)
|V(γ)\Vγ|+|V(γ′⊺)\Uγ′⊺ |2e+|E(γ)\E(Uγ∩Vγ)|+|E(γ′⊺)\E(Uγ′⊺∩Vγ′⊺)|

Proof. For the case of a PMVS interaction pattern, we do the following.

1. We know that at least one edge must be removed in the adding edge indicators step
for non-terminal P. For each such edge, we specify the endpoints for a cost of at
most D2

V.

2. For the removing middle edge indicators step, we can specify each edge which is
removed by specifying its two endpoints at a cost of D2

v per edge.

For the case of an intersection interaction pattern, we do the following.

1. Go through each vertex in V(γ) \ Vγ and V(γ′⊺) \Uγ′⊺ and indicate which vertex
they intersect with, if any. This has a cost of (3DV)

|V(γ)\Vγ|+|V(γ′⊺)\Uγ′⊺ |

2. For each edge that intersected, use a label in [2] to denote its multiplicity after
linearization. This has a cost of at most 2|E(γ)\E(Vγ)|+|E(γ

′⊺)\E(Uγ′⊺)|.

3. For each edge in Vγ ∪Uγ′⊺ which is not in Uγ ∪ Vγ′⊺ , use a label in [2] to decide
whether it is removed in the Remove middle edge indicators operation. This has a
cost of at most 2|E(Vγ)\E(Uγ)|+|E(Uγ′⊺)\E(Vγ′⊺)|.

Lemma E.49 (Bound for cP). The excess in cP over what goes into the slack is∣∣∣∣ cP
c≈P

∣∣∣∣ ≤ 2 .

Proof. By Lemma E.20,∣∣∣∣ cP
c≈P

∣∣∣∣ ≤ (
1

1− p

)# of indicators

≤ (1 + O(p))D2
V ≤ 2

provided n is sufficiently large.

Lemma E.50 (Bound for N(P)). For all γ, τ,γ′⊺ with size at most DV and P ∈ Pinteract
γ,τ,γ′⊺

N(P) ≤ (3DV)
|V(γ)\Uγ|+|V(γ′⊺)\Vγ′⊺ |

Proof. We are given γ, τ,γ′⊺, the interaction pattern P, and the resulting ribbon R′2 and we
need to specify the ribbons G, R2, G′⊺which have shapes γ, τ,γ′⊺, have interaction pattern
P, and result in the ribbon R′2.

88

Suppose that P is a PMVS interaction. To do this, it is sufficient to specify how the
vertices in γ and γ′⊺ are mapped to in R′2. This specifies the ribbons G and G′⊺. Either
AR2 = BG and BR2 = AG′⊺ together with the remaining unmapped vertices of R′2 have
shape τ, in which case this is a possible ribbon R2, or they do not, in which case this is
merely overcounting.

We automatically have that AG = AR′2
and BG′⊺ = BR′2

so we do not need to specify
where the vertices Uγ and Vγ′⊺ are mapped to. For each of the remaining vertices, the num-
ber of choices is at most 3DV so the total number of choices is (3DV)

|V(γ)\Uγ|+|V(γ′⊺)\Vγ′⊺ |,
as needed.

For an intersection term interaction, the same analysis goes through, with the added
constraint that the intersection pattern along with the mappings of γ and γ′⊺ fix additional
labels of R2.

E.6 Truncation error

Definition E.51 (Idsym).

Idsym[I, J] =

1 I = J as unordered sets
0 otherwise

Lemma E.52. truncation1 ⪯ nDSoS+η−
ε

16 (DV−2DSoS)Idsym

Proof. Applying Theorem D.10 with D = 3DV, for all shapes α such that DV ≤ |V(α)| ≤
3DV, |Uα| ≤ DSoS, |Vα| ≤ DSoS, and α has no isolated vertices outside of Uα ∪Vα,

λα||Mα|| ≤ 2Badjust(α)n(1−α) |Uα |+|Vα |2 +η−(γ−αβ−3 logn(3DV))|E(α)|

≤ 2Badjust(α)n(1−ε)DSoS−
ε
8 (DV−2DSoS)−

ε
4 (|E(Uα)|+|E(Vα)|)

as |E(α)| ≥ |E(Uα)|+ |E(Vα)|+
|V(α)|−|Uα|−|Vα|

2 ≥ |E(Uα)|+ |E(Vα)|+
DV−2DSoS

2 and γ − αβ −
3 logn(3DV) ≥

ε
4 .

We now observe that

truncation1 =
∑

U,V∈Imid:
U∼V

|U ∩V|!
(|U|!)2

∑
σ∈LU,≤DV
τ∈MU,V,≤DV
σ′∈LV,≤DV :

|V(σ−◦τ◦(σ′⊺)−)|>DV

λσ−◦τ◦(σ′⊺)−Mσ−◦τ◦(σ′⊺)−

|Aut(σ− ◦ τ ◦ (σ′⊺)−)|

⪯

∑

shape α:
DV<|V(α)|≤3DV ,
|Uα|≤DSoS,|Vα|≤DSoS

λα||Mα||

IdSym

89

⪯

∑

shape α:
DV<|V(α)|≤3DV ,
|Uα|≤DSoS

λα||Mα||

IdSym

⪯

∑
U∈Imid:|U|≤DSoS

∑

shape α:
DV<|V(α)|≤3DV ,

Uα=U

DSoS!
|Uα|!c(α)

c(α)λα||Mα||

IdSym

⪯

∑
U∈Imid:|U|≤DSoS

 max
shape α:

DV<|V(α)|≤3DV ,
Uα=U

{
c(α)Badjust(α)

}

DSoS!nDSoS+η−
ε
8 (DV−2DSoS)−

ε
4 |E(U)|IdSym

⪯ nDSoS+η−
ε

16 (DV−2DSoS)Idsym

We now analyze the second part of the truncation error.

Lemma E.53. truncation2 ⪰ −n2DSoS+2η− ε32 DV IdSym

Proof. Recall that

truncation2 =
∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

(−1)# of intersection indices in [j]∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!(LUτP ,≤DL(P) − LUτP ,≤DV

)
(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 L⊺VτP ,≤DV

+ LUτP ,≤DL(P)

(∏ j

i=1 cPiN(Pi)
)
λτPMτ+P

|Aut(τP)|

 (L⊺VτP ,≤DR(P)
− L⊺VτP ,≤DV

)
so

truncation2 ⪰−
∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

1∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!

90

∥∥∥∥LUτP ,≤DL(P) − LUτP ,≤DV

∥∥∥∥

(∏ j

i=1 cPiN(Pi)
)
λτP

∥∥∥MτP

∥∥∥
|Aut(τP)|

 ∥∥∥∥L⊺VτP ,≤DV

∥∥∥∥
+

∥∥∥∥LUτP ,≤DL(P)

∥∥∥∥

(∏ j

i=1 cPiN(Pi)
)
λτP

∥∥∥MτP

∥∥∥
|Aut(τP)|

∥∥∥∥∥L⊺

VτP ,≤DR(P)
− L⊺VτP ,≤DV

∥∥∥∥∥
 IdSym

We can analyze this using the following claims.

Claim E.54. For all U ∈ Imid,

max
D:D≤DV

{∥∥∥LU,≤D
∥∥∥}√λU ∥MU∥ ≤ nDSoS+η−

ε
16 |E(U)|

Proof. By Corollary D.13, for all σ ∈ LU,≤DV

λσ− ||Mσ− ||
√
λU||MU|| ≤ 2Badjust(σ)nDSoS+η−

ε
2 DSoS−

ε
8 |E(σ)|−

ε
8 |V(σ)|

We now observe that

max
D:D≤DV

{∥∥∥LU,≤D
∥∥∥}√λU ∥MU∥ ≤

∑
σ∈LU,≤DV

λσ− ||Mσ− ||
√
λU||MU||

≤ DSoS!

 ∑
σ∈LU,≤DV

1
c(σ)|Uσ|!

 max
σ∈LU,≤DV

{
c(σ)λσ− ||Mσ− ||

√
λU||MU||

}
≤ 4DSoS! max

σ∈LU,≤DV

{
c(σ)Badjust(σ)nDSoS+η−

ε
2 DSoS−

ε
8 |E(σ)|−

ε
8 |V(σ)|

}
≤ nDSoS+η−

ε
16 |E(U)|

Claim E.55. For all U ∈ Imid and all D ≤ DV,∥∥∥LU,≤D − LD,≤DV

∥∥∥ √
λU ∥MU∥ ≤ nDSoS+η−

ε
16 D− ε16 |E(U)|

Proof. By Corollary D.13, for all σ ∈ LU,≤DV

λσ− ||Mσ− ||
√
λU||MU|| ≤ 2Badjust(σ)nDSoS+η−

ε
2 DSoS−

ε
8 |E(σ)|−

ε
8 |V(σ)|

We now observe that∥∥∥LU,≤D − LU,≤DV

∥∥∥ √
λU ∥MU∥ ≤

∑
σ∈LU,≤DV :|V(σ)|>D

λσ− ||Mσ− ||
√
λU||MU||

≤ DSoS!

 ∑
σ∈LU,≤DV

1
c(σ)|Uσ|!

 max
σ∈LU,≤DV :|V(σ)|>D

{
c(σ)λσ− ||Mσ− ||

√
λU||MU||

}
91

≤ 4DSoS! max
σ∈LU,≤DV :|V(σ)|>D

{
c(σ)Badjust(σ)nDSoS+η−

ε
2 DSoS−

ε
8 |E(σ)|−

ε
8 |V(σ)|

}
≤ nDSoS+η−

ε
16 D− ε16 |E(U)|

Using these claims and grouping all of the terms where UτP = U together in the same
way as in the proof of Lemma E.39, we obtain that∑

U,V∈Imid:U∼V

|U ∩V|!
(|U|!)2

∑
τ∈MU,V

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ)

1∏ j
i=1 |Uγi |!|Vγ′i

⊺ |!∥∥∥∥LUτP ,≤DL(P) − LUτP ,≤DV

∥∥∥∥

(∏ j

i=1 cPiN(Pi)
)
λτP

∥∥∥MτP

∥∥∥
|Aut(τP)|

 ∥∥∥∥L⊺VτP ,≤DV

∥∥∥∥
+

∥∥∥∥LUτP ,≤DL(P)

∥∥∥∥

(∏ j

i=1 cPiN(Pi)
)
λτP

∥∥∥MτP

∥∥∥
|Aut(τP)|

∥∥∥∥∥L⊺

VτP ,≤DR(P)
− L⊺VτP ,≤DV

∥∥∥∥∥
 IdSym

⪯2
∑

U∈Imid

1
|U|!

∑
τ∈M

∞∑
j=1

∑
(Γ,Γ′⊺,P)∈P j(τ):

UτP=U

|Uτ ∩Vτ|!
|Vτ|!

1∏ j
i=1 |Vγi |!|Vγ′i

⊺ |!

2 jc(τ)

j∏

i=1

c(γi)c(γ′i)c(Pi)cPiN(Pi)

 λτP

∥∥∥MτP

∥∥∥ n−
ε

16 min {DL(P),DR(P)}√
λUτP

∥∥∥MUτP

∥∥∥λVτP

∥∥∥MVτP

∥∥∥
 n2DSoS+2η− ε16 |E(U)|IdSym

2 jc(τ)
∏ j

i=1 c(γi)c(γ′i)c(Pi)

⪯

∑
U∈Imid

max
τ∈M
j∈N+

(Γ,Γ′,P)∈P j(τ):
UτP=U

100 jc(τ)

j∏

i=1

c(γi)c(γ′i)c(Pi)cPiN(Pi)

 λτP

∥∥∥MτP

∥∥∥ n−
ε

16 min {DL(P),DR(P)}√
λUτP

∥∥∥MUτP

∥∥∥λVτP

∥∥∥MVτP

∥∥∥

n2DSoS+2η− ε16 |E(U)|IdSym

We now make the same observations as before together with an observation about DL(P)
and DR(P):

1.
∏ j

i=1 c≈Pi
λτP

∥∥∥MτP
∥∥∥√

λUτP

∥∥∥∥MUτP

∥∥∥∥λVτP

∥∥∥∥MVτP

∥∥∥∥ = n− slack(τP)

2. By the slack lower bound in Bound C.1,

slack(τP) ≥ ε

(
Etot(τP) −

|E(UτP)|+ |E(VτP)|

2
+ |Vtot(τP)| −

|UτP |+ |VτP |

2

)
92

= ε

(
|E(τ)| −

|E(Uτ)|+ |E(Vτ)|
2

+ |V(τ)| −
|Uτ|+ |Vτ|

2

)
+

ε
∑
i∈[j]

|E(γi)| −
|E(Uγi)|+ |E(Vγi)|

2
+ (# of edges removed from γi)

+ |V(γi)| −
|Uγi |+ |Vγi |

2
+ |E(γ′⊺i)| −

|E(Uγ′⊺i)|+ |E(Uγ′
⊺
i
)|

2

+ (# of edges removed from γ′⊺i) + |V(γ′⊺i)| −
|Uγ′⊺i |+ |Vγ′

⊺
i
|

2

3. DL(P) ≥ DV − |V(γ) \Vγ| and DR(P) ≥ DV − |V(γ′⊺) \UV(γ′⊺)| so

min {DL(P), DR(P)} ≥ DV − 2
j∑

i=1

|V(γi)| −
|Uγi |+ |Vγi |

2
+ |V(γ′⊺i)| −

|Uγ′⊺i |+ |Vγ′
⊺
i
|

2

4. c(τ) ≤ n

ε
32 (|E(τ)|−

|E(Uτ)|+|E(Vτ)|
2 +|V(τ)|− |Uτ |+|Vτ |2)

5. Badjust(τP) ≤ n
ε

32 (|E(τP)|−
|E(UτP)|+|E(VτP)|

2 +|V(τP)|−
|UτP |+|VτP |

2)

6. For all i ∈ [j], c(γi)c(γ′i), c(Pi), and N(Pi) are all at most n raised to the power

ε
32

∑
i∈[j]

|E(γi)| −
|E(Uγi)|+ |E(Vγi)|

2
+ (# of edges removed from γi)

+ |V(γi)| −
|Uγi |+ |Vγi |

2
+ |E(γ′⊺i)| −

|E(Uγ′⊺i)|+ |E(Uγ′
⊺
i
)|

2

+ (# of edges removed from γ′⊺i) + |V(γ′⊺i)| −
|Uγ′⊺i |+ |Vγ′

⊺
i
|

2

7.

∣∣∣∣ cP
c≈P

∣∣∣∣ ≤ 2

E.7 Well-conditionedness of L

The goal of this section is to prove a lower bound on the minimum nonzero eigenvalue of
LL⊺. More specifically we will prove the following lemma:

93

Lemma E.56 (Well-conditionedness of L).∑
V∈Imid

λV

|V|!
LVMV+L⊺V ⪰ Ω(n−DSoS)Idsym

The approach we take to Lemma E.56 is as follows. If we can find nonnegative weights
{wV : V ∈ Imid} such that ∑

V∈Imid

wVλV

|V|!
LVMV+L⊺V ⪰ Idsym

then since each term is individually PSD, the left-hand side is PSD-dominated by(
max

V∈Imid
wV

)
·

∑
V∈Imid

λV

|V|!
LVMV+L⊺V .

This implies the lower bound∑
V∈Imid

λV

|V|!
LVMV+L⊺V ⪰

1
max

V∈Imid
wV

Idsym .

We will therefore seek an appropriate choice of wV that does not grow too quickly.
We will choose wU = 0 unless E(U) = ∅. The following lemma shows a growth

condition which is sufficient. Since |Uσ| > |Vσ| for all non-diagonal left shapes σ, we can
use this lemma to define wU in order of increasing size |U|.

Lemma E.57. If we have nonnegative weights {wV : V ∈ Imid, E(V) = ∅} such that for all
U, V ∈ Imid with E(V) = ∅,

wV max
nontrivial
σ∈LV :Uσ=U

{
2c(σ)λσ||Mσ||

}
≤

wU

2

then ∑
V∈Imid:
E(V)=∅

wV

|V|!
LVL⊺V ⪰

1
2

Idsym .

Proof. LV consists of the trivial shape with V(σ) = V, as well as larger off-diagonal shapes.
We use the following definition and claim to bound the off-diagonal shapes.

Definition E.58 (IdSym,V). For V ∈ Imid, let IdSym,V be the restriction of Idsym to the degree
|V|-by-|V| block.

94

Claim E.59. For all V ∈ Imid with E(V) = ∅,

1
|V|!

LVL⊺V ⪰ IdSym,V −
∑

U∈Imid

1
|U|!

∑
nontrivial
σ∈LV :Uσ=U

2λσ||Mσ||IdSym,U

Proof of claim. We have that

1
|V|!

LVL⊺V = IdSym,V +
∑

non-trivial σ∈LV

λσ(Mσ + M⊺σ) +
1
|V|!

∑
non-trivial σ,σ′∈LV

λσλσ′MσM
⊺
σ′

The last term is PSD. Hence it remains to bound the middle term.

∑
non-trivial σ∈LV

λσ(Mσ + M⊺σ) =
∑

U∈Imid:U,V

∑
σ∈LV :
Uσ=U

λσ(Mσ + M⊺σ)

=
∑

U∈Imid

1
|U|!

∑
non-trivial σ∈LV :

Uσ=U

λσId1/2
Sym,U(Mσ + M⊺σ)Id1/2

Sym,U

⪰ −

∑
U∈Imid

1
|U|!

∑
non-trivial σ∈LV :

Uσ=U

λσId1/2
Sym,U(∥Mσ∥+

∥∥∥M⊺σ
∥∥∥)Id1/2

Sym,U

= −
∑

U∈Imid

1
|U|!

∑
non-trivial σ∈LV :

Uσ=U

2λσ ∥Mσ∥ IdSym,U

which completes the proof of the claim.

Using the claim,∑
V∈Imid

wV

|V|!
LVL⊺V ⪰

∑
V∈Imid

wVIdSym,V −
∑

U,V∈Imid

wV

|U|!

∑
nontrivial
σ∈LV :Uσ=U

2λσ||Mσ||IdSym,U

=
∑

V∈Imid

wVIdSym,V −
∑

U∈Imid

∑

V∈Imid

∑
nontrivial
σ∈LV :Uσ=U

wV

c(σ)|U|!
2c(σ)λσ||Mσ||

 IdSym,U

⪰

∑
V∈Imid

wVIdSym,V −
∑

U∈Imid

 max
V∈Imid

wV max
nontrivial
σ∈LV :Uσ=U

{2c(σ)λσ||Mσ||}

 IdSym,U

⪰

∑
V∈Imid

wVIdSym,V −
1
2

∑
U∈Imid

wUIdSym,U (by assumption)

95

=
1
2

∑
V∈Imid

wVIdSym,V

Now we calculate the bound on the weights to deduce Lemma E.56.

Lemma E.60. For all left shapes σ with E(Vσ) = ∅,

λσ
∥∥∥M≈
σ

∥∥∥ ≤ n(1−α)
(
|Uσ |−|Vσ |

2

)
−(γ−αβ)|E(σ)|

Proof. By Lemma 4.8 we have

λσ
∥∥∥M≈σ

∥∥∥ = n(1−α)
(
|Uσ |+|Vσ |

2

)
−(1

2−α)w(σ)−
w(Vσ)

2 −(γ−αβ)|E(σ)|

Substituting w(σ) ≥ w(Vσ) since σ is a left shape, and w(Vσ) = |Vσ|,

λσ
∥∥∥M≈σ

∥∥∥ ≤ n(1−α)
(
|Uσ |+|Vσ |

2

)
−(1−α)|Vσ|−(γ−αβ)|E(σ)|

= n(1−α)
(
|Uσ |−|Vσ |

2

)
−(γ−αβ)|E(σ)|

Corollary E.61. For all U, V ∈ Imid such that E(V) = ∅,

max
nontrivial
σ∈LV :Uσ=U

{
2c(σ)λσ||Mσ||

}
≤ n(1−α)

(
|Uσ |−|Vσ |

2

)

Proof.

2c(σ)λσ||Mσ|| ≤ 2c(σ)Badjust(σ)n
(1−α)

(
|Uσ |−|Vσ |

2

)
−(γ−αβ)|E(σ)|

≤ (16DV)
|E(σ)|n(1−α)

(
|Uσ |−|Vσ |

2

)
−(γ−αβ)|E(σ)|

≤ n(1−α)
(
|Uσ |−|Vσ |

2

)
.

Corollary E.62. Choosing wU = O
(
n(1−α) |U|2

)
satisfies the assumption of Lemma E.57.

Recall that because the size of the SMVS is at most DSoS, then |U| ≤ DSoS. The maximum
of wU is wDSoS ≤ O(nDSoS), therefore we conclude Lemma E.56.

96

F Computing Ẽ[1]

Proposition 2.52. With high probability, we have Ẽ[1] = 1± o(1).

Proof. ∣∣∣Ẽ[1] − 1
∣∣∣ = ∣∣∣ ∑

α∈S:
Uα=Vα=∅,

E(α),∅

λαMα
∣∣∣ ≤ max
α,∅:Uα=Vα=∅

{c(α)λ(α) · ∥Mα∥}

Letting S be the SMVS for α, observe that

1. λα∥Mα∥ ≤ n−(
1
2−α)w(α)−

w(S)
2 −(γ−αβ)|E(α)| · Badjust(α)

2. w(S) ≥ −η− 2
∣∣∣E(S)∣∣∣ logn DV

3. w(α) ≥ −η− 2|E(α)| logn DV

4. c(α) ·Badjust(α) ·n2η+4|E(α)| logn DV ≤ n2η(16DV)
8|E(α)|which is less than n

γ−αβ
2 |E(α)|when

η ≤
γ−αβ

4 − 4 logn(16DV).

Therefore, we can bound

max
α,∅:Uα=Vα=∅

{c(α)λ(α) · ∥Mα∥} ≤ n
αβ−γ

2 ≤ o(1)

as |E(α)| > 0, giving us that
∣∣∣Ẽ[1] − 1

∣∣∣ = o(1) with probability at least 1− 2n4 logn(16DV)−
γ−αβ

4 .

Proposition 2.54. With high probability,∣∣∣∣∣∣∣
n∑

i=1

Ẽ[XXi] − k

∣∣∣∣∣∣∣ = o(k),

and ∣∣∣∣∣∣∣∣
∑

{i, j}∈E(G)

Ẽ[XXiXX j] −
k2q
2

∣∣∣∣∣∣∣∣ = o(k2q)

Proof. This can be shown by decomposing
∑n

i=1 Ẽ[XXi] and
∑
{i, j}∈E(G) Ẽ[XXiXX j] in terms of

ribbons.
For each ribbon R with edges E(R) and AR = BR = ∅, this ribbon appears in

∑n
i=1 Ẽ[XXi]

in two ways.

97

1. For each i ∈ V(R), the ribbon R′ with E(R′) = E(R), V(R′) = V(R), AR′ = (i), and

BR′ = ∅ appears in Ẽ[XXi] with coefficient
(

k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|
. This happens for

|V(R)| different i.

2. For each i which is not in V(R), the ribbon R′with E(R′) = E(R), V(R′) = V(R)∪ {i},

AR′ = (i), and BR′ = ∅ appears in Ẽ[XXi] with coefficient
(

k
n

)|V(R)|+1
(

q−p
√

p(1−p)

)|E(R)|
.

This happens for n− |V(R)| different i.

Thus, for each shape α with Uα = Vα = ∅ where |V(α)| ≤ DV, Mα appears in
∑n

i=1 Ẽ[XXi]
with coefficient

1
|Aut(α)|

(
k(n− |V(α)|)

n
1|V(α)|<DV

+ |V(α)|

) (
k
n

)|V(R)| q− p√
p(1− p)

|E(α)|
The dominant term is the trivial shape α with no vertices or edges which gives a contri-
bution of exactly k. Using a similar analysis as the analysis used to bound

∣∣∣Ẽ[1] − 1
∣∣∣, it is

not hard to show that the remaining terms have magnitude o(k) with high probability.

To analyze
∑
{i, j}∈E(G) Ẽ[XXiXX j], we use the identities 1e∈E(G)χe =

√
p(1− p) + (1 − p)χe

and 1e∈E(G) = p +
√

p(1− p)χe.

For each ribbon R with edges E(R) and AR = BR = ∅, this ribbon appears in∑
i< j 1{i, j}∈E(G) Ẽ[XXiXX j] in several ways.

1. For each i < j ∈ V(R) such that {i, j} ∈ E(R), the ribbon R′1 with E(R′1) = E(R),
V(R′) = V(R), AR′ = (i), and BR′ = (j) appears in Ẽ[XXiXX j] with coefficient(

k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|
. This is then multiplied by (1 − p) because of the edge in-

dicator 1{i, j}∈E(G).

Similarly, the ribbon R′2 with E(R′2) = E(R) \ {i, j}, V(R′) = V(R), AR′ = (i), and

BR′ = (j) appears in Ẽ[XXiXX j] with coefficient
(

k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|−1

. This is then

multiplied by
√

p(1− p) because of the edge indicator 1{i, j}∈E(G).

This gives a total contribution of
(
1 + p(1−p)

q−p

) (
k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|
. This happens

for |E(R)| different i < j.

2. For each i < j ∈ V(R) such that {i, j} < E(R), the ribbon R′1 with E(R′1) = E(R),
V(R′) = V(R), AR′ = (i), and BR′ = (j) appears in Ẽ[XXiXX j] with coefficient

98

(
k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|
. This is then multiplied by p because of the edge indicator

1{i, j}∈E(G).

Similarly, the ribbon R′2 with E(R′2) = E(R) ∪ {i, j}, V(R′) = V(R), AR′ = (i), and

BR′ = (j) appears in Ẽ[XXiXX j] with coefficient
(

k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|+1

. This is then

multiplied by
√

p(1− p) because of the edge indicator 1{i, j}∈E(G).

This gives a total contribution of q
(

k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|
. This happens for (V(R)

2) −

|E(R)| different i < j.

3. For each i < j ∈ V(R) such that i ∈ V(R) but j < V(R), the ribbon R′1 with E(R′1) =
E(R), V(R′) = V(R)∪{ j}, AR′ = (i), and BR′ = (j) appears in Ẽ[XXiXX j]with coefficient(

k
n

)|V(R)|+1
(

q−p
√

p(1−p)

)|E(R)|
. This is then multiplied by p because of the edge indicator

1{i, j}∈E(G).

Similarly, the ribbon R′2 with E(R′2) = E(R) ∪ {i, j}, V(R′) = V(R) ∪ { j}, AR′ = (i),

and BR′ = (j) appears in Ẽ[XXiXX j] with coefficient
(

k
n

)|V(R)|+1
(

q−p
√

p(1−p)

)|E(R)|+1

. This is

then multiplied by
√

p(1− p) because of the edge indicator 1{i, j}∈E(G).

This gives a total contribution of kq
n

(
k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|
.

The same analysis holds for the case when i < V(R) and j ∈ V(R). These two cases
happen for |V(R)|(n− |V(R)|) different i < j.

4. For each i < j ∈ V(R) such that i, j < V(R), the ribbon R′1 with E(R′1) = E(R),
V(R′) = V(R) ∪ {i, j}, AR′ = (i), and BR′ = (j) appears in Ẽ[XXiXX j] with coefficient(

k
n

)|V(R)|+2
(

q−p
√

p(1−p)

)|E(R)|
. This is then multiplied by p because of the edge indicator

1{i, j}∈E(G).

Similarly, the ribbon R′2 with E(R′2) = E(R) ∪ {i, j}, V(R′) = V(R) ∪ {i, j}, AR′ = (i),

and BR′ = (j) appears in Ẽ[XXiXX j] with coefficient
(

k
n

)|V(R)|+2
(

q−p
√

p(1−p)

)|E(R)|+1

. This is

then multiplied by
√

p(1− p) because of the edge indicator 1{i, j}∈E(G).

This gives a total contribution of k2q
n2

(
k
n

)|V(R)|
(

q−p
√

p(1−p)

)|E(R)|
. This happens for ((n−|V(R)|)

2)

99

different i < j.

Putting everything together, each ribbon R with AR = BR = ∅ and |V(R)| ≤ DV
appears with coefficient (1 + p(1− p)

q− p

)
|E(R)|+ q

((
V(R)

2

)
− |E(R)|

)
+

kq
n
|V(R)|(n− |V(R)|)1|V(R)|<DV

+
k2q
n2

(
(n− |V(R)|)

2

)
1|V(R)|<DV−1

 (k
n

)|V(R)| q− p√
p(1− p)

|E(R)|
in

∑
{i, j}∈E(G) Ẽ[XXiXX j]. Thus, for each shape α with Uα = Vα = ∅ and |V(α)| ≤ DV, the

graph matrix Mα appears with coefficient

1
|Aut(α)|

 (1 + p(1− p)
q− p

)
|E(α)|+ q

((
V(α)

2

)
− |E(α)|

)
+

kq
n
|V(α)|(n− |V(α)|)1|V(α)|<DV

+
k2q
n2

(
(n− |V(R)|)

2

)
1|V(R)|<DV−1

 (k
n

)|V(α)| q− p√
p(1− p)

|E(α)|
in

∑
{i, j}∈E(G) Ẽ[XXiXX j].

The dominant term in
∑
{i, j}∈E(G) Ẽ[XXiXX j] comes from the empty shapeαwith no vertices

or edges. This gives k2q
n2 (

n
2) ≈

k2q
2 . Using a similar analysis as the analysis used to bound∣∣∣Ẽ[1] − 1

∣∣∣, it is not hard to show that the remaining terms have magnitude o(k2q) with high
probability.

100

	Introduction
	Our contributions
	The log-density framework
	Our approach
	Related work
	Organization of the paper

	Preliminaries
	The Sum-of-Squares algorithm
	Moment matrices
	p-biased Fourier analysis and graph matrices
	Norm bounds
	Graph matrix calculus: factoring
	Graph matrix calculus: composition
	Graph matrix calculus: intersections
	Graph matrix calculus: improper shapes and linearization
	Pseudocalibration

	Positive Minimum Vertex Separator Decomposition
	Motivation for the positive minimum vertex separator
	PMVS subroutine
	Intersection term operation
	Summary of the operations and overall decomposition

	Combinatorial Norm Charging Arguments
	Setup
	Slack for middle shapes
	Slack for the PMVS subroutine
	Slack for intersection terms
	Slack for Removing Middle Edge Indicators
	Final slack lower bound

	Conclusion
	Additional Content on Graph Matrices
	Proof of Proposition 2.23
	Additional definitions

	Densest subgraph weight function
	Requirements for Combinatorial Adjustment Terms
	Norm bounds
	Conditioning

	Formal Approximate PSD Decomposition
	Starting point for the approximate PSD decomposition
	Interaction patterns
	The approximate PSD decomposition
	Analyzing Lambda
	c-function bounds
	Truncation error
	Well-conditionedness of L

	Computing E[1]

