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Abstract

Whether or not the Sparsest Cut problem admits an efficient 𝑂(1)-approximation algorithm

is a fundamental algorithmic question with connections to geometry and the Unique Games

Conjecture. We design an 𝑂(1)-approximation algorithm to Sparsest Cut for the class of Cayley

graphs over Abelian groups, running in time 𝑛𝑂(1) · exp{𝑑𝑂(𝑑)} where 𝑑 is the degree of the

graph.

Previous work has centered on solving cut problems on graphs which are “expander-like” in

various senses, such as being a small-set expander or having low threshold rank.

In contrast, low-degree Abelian Cayley graphs are natural examples of non-expanding

graphs far from these assumptions (e.g. the cycle). We demonstrate that spectral and semidefinite

programming-based methods can still succeed in these graphs by analyzing an eigenspace

enumeration algorithm which searches for a sparse cut among the low eigenspace of the

Laplacian matrix. We dually interpret this algorithm as searching for a hyperplane cut in a

low-dimensional embedding of the graph.

In order to analyze the algorithm, we prove a bound of 𝑑𝑂(𝑑) on the number of eigenvalues

“near” 𝜆2 for connected degree-𝑑 Abelian Cayley graphs. We obtain a tight bound of 2
Θ(𝑑)

on the

multiplicity of 𝜆2 itself which improves on a previous bound of 2
𝑂(𝑑2)

by Lee and Makarychev.
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1 Introduction

For an undirected graph 𝐺, the sparsest cut measures how poor of an expander the graph is,

characterizing how slowly random walks on 𝐺 mix. We will quantify the sparsest cut through a

measure known as conductance:

Definition 1.1 (Conductance). For a graph 𝐺 and a set 𝑄 ⊆ 𝑉(𝐺) , the conductance of 𝑄 in 𝐺 is

defined as

𝜙𝐺(𝑄) :=
𝐸(𝑄, �̄�)
vol(𝑄) =

��{(𝑖, 𝑗) ∈ 𝐸(𝐺) : 𝑖 ∈ 𝑄, 𝑗 ∉ 𝑄}
��∑

𝑖∈𝑄 deg𝐺(𝑖)
,

The conductance of 𝐺 is then 𝜙(𝐺) := min𝑄⊆𝑉(𝐺), vol(𝑄)⩽vol(𝐺)/2 𝜙𝐺(𝑄) .

The conductance problem asks to compute 𝜙(𝐺) , and ideally find a set 𝑄 minimizing 𝜙𝐺(𝑄).
Via known reductions, up to a constant factor of approximation, conductance is equivalent to

computing several other graph parameters such as edge expansion, balanced separator, and sparsest

cut. These problems will be considered interchangeably under the umbrella term sparsest cut.

Because of its centrality to algorithms, computational complexity, combinatorics, and geometry,

the sparsest cut problem has been the main focus of a long line of work. A first algorithm follows

from the Cheeger inequality which establishes a connection between conductance and the second

smallest eigenvalue of the graph’s normalized Laplacian matrix:
1

2
𝜆2 ⩽ 𝜙(𝐺) ⩽

√
2𝜆2 . The proof

of this relation also shows that Fiedler’s algorithm [Fie73] (thresholding the eigenvector for 𝜆2)

finds a set with conductance 2

√
𝜙(𝐺) , which achieves a constant factor approximation on a graph

which is a spectral expander. An 𝑂(log 𝑛)-approximation on all graphs was obtained via linear

programming by Leighton and Rao [LR99], and later improved to 𝑂(
√

log 𝑛) by Arora, Rao, and

Vazirani (ARV) [ARV09] via semidefinite programming. (We use 𝑛 to denote the number of vertices

in the input graph.) To this day, the ARV algorithm remains the state-of-the-art.

A central challenge to resolving the approximability of sparsest cut is its intricate relationship

with the Unique Games Conjecture (UGC) and the Small Set Expansion Hypothesis (SSEH), themselves

outstanding open problems with a close connection [Kho02, RS10, RST12]. Assuming the SSEH,

sparsest cut does not have a polynomial-time 𝑂(1)-approximation algorithm [RST12] (The same

holds for “non-uniform” sparsest cut assuming the UGC [CKK
+
06, KV15, AKK

+
08]). Thus we have

some evidence that beating the 𝑂(
√

log 𝑛) approximation factor of the ARV algorithm may be hard.

On the other side of the coin, searching for better approximation algorithms for sparsest cut is an

ostensible approach to developing algorithms for small-set expansion and unique games.

Searching for new algorithms for cut problems such as sparsest cut and unique games has

been surprisingly fruitful. An energetic collection of works around 15 years ago identified a

class of techniques including subspace enumeration [Kol11, ABS15], higher-order semidefinite

programming and sum-of-squares [BRS11, GS11, GS12, GS13, AGS13], and algorithmic regularity

lemmas [FK96, OT13]. Extending an initial result by Arora et al. [AKK
+
08] solving unique games on

expanders, the concerted message of these algorithms has been that cut problems are solvable on

graphs which are “expander-like”. One way to measure the latter property is through the 𝜏-threshold
rank.

Definition 1.2 (𝜏-threshold-rank). For a graph 𝐺 and 2 ⩾ 𝜏 ⩾ 0 , the 𝜏-threshold-rank mul𝜏(𝐺) is the

number of eigenvalues of the normalized Laplacian with value at most 𝜏.

1



Expanders have Ω(1)-threshold rank 1 (i.e., mulΩ(1)(𝐺) = 1 in a spectral expander). A graph

with 𝜏-threshold rank equal to 𝑟 can be partitioned into at most 𝑟 + 1 pieces such that the induced

subgraph on each piece essentially has expansion at least 𝜏 (a.k.a the graph has an “expander

decomposition” [OT14]). See Fig. 1 for a conceptual picture and Appendix A for a simple lemma.

Figure 1: A graph with mulΩ(1) = 3 and three components. In this graph, the 0/1 indicator vectors

for the three components approximately span the three low eigenvectors.

The aforementioned line of work yields algorithms for sparsest cut with running time that

scales with the threshold rank of the graph. For graphs with low threshold rank such as in Fig. 1,

sparsest cut admits an efficient 𝑂(1)-approximation.

Theorem 1.3 ([ABS15, GS13]). For all constants 𝛿 > 0 , sparsest cut admits an 𝑂(1)-approximation in
time 𝑛𝑂(1) · exp{𝑂(𝑟)} , where 𝑟 is the (1+ 𝛿) · 𝜙(𝐺)-threshold-rank.

The hidden constants in the approximation factor and running-time have polynomial dependence

on 1/𝛿.

The upper limits of these techniques are still not well understood. Recent work has pushed

spectral and semidefinite programming techniques to looser definitions of what it means to be

“expander-like”, including being a small-set expander [BBK
+
21], coming from a high-dimensional

expander [BHKL22], or having a “succinct characterization” of non-expanding sets [BM23].

Despite these remarkable achievements on the algorithmic side, there has not been comparable

progress in spectral graph theory, e.g., which graphs have high or low threshold rank? Existing

algorithms appear to be most effective when the lower bound in the Cheeger inequality is nearly

tight, 𝜙(𝐺) = 𝑂(𝜆2), since the algorithm in Theorem 1.3 is efficient when there are very few

eigenvalues between 𝜆2 and 𝜙(𝐺). The lower bound in the Cheeger inequality is nearly tight if there

is a Boolean vector in the low eigenspace of the graph. For example, this is depicted in Fig. 1 since

the low eigenspace is approximately spanned by the (Boolean) indicators of the components.

Towards understanding the spectra of graphs, there have been other developments including

higher-order Cheeger inequalities [LRTV12, LOGT14] and recent works showing that the multiplicity

of the 𝑞-th eigenvalue in a graph with maximum degree 𝑑 is at most 𝑜𝑑,𝑞(𝑛) [JTY
+
21, MRS21, JTY

+
23].

With 𝑞 = 2, the result on eigenvalue multiplicity by Jiang et al. [JTY
+
21] was the key insight in

determining the maximum number of equiangular lines in R𝑑
, resolving a longstanding open

question in geometry.

The papers cited above by Jiang et al. [JTY
+
21] and McKenzie–Rasmussen–Srivastava [MRS21]

both mention the class of Cayley graphs as an interesting special case for spectral analysis. In this
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work, we will restrict our attention further to Abelian Cayley graphs:

Definition 1.4 (Abelian Cayley Graph). Let Γ be an Abelian group and let 𝑆 be a multiset (called

the set of generators) from Γ such that the multiplicity of 𝑥 ∈ 𝑆 and −𝑥 ∈ 𝑆 is the same for all 𝑥 ∈ Γ.

The Abelian Cayley graph of Γ generated by 𝑆, denoted Cay(Γ, 𝑆), is the graph with vertex set Γ and

edges {(𝑣, 𝑣 + 𝑠) : 𝑣 ∈ Γ, 𝑠 ∈ 𝑆}.
Abelian Cayley graphs are fundamental mathematical objects with an extensive history (e.g. see

[Bab79, KRS03, FMT06, LZ18, LPS88, CTZ20, CFS91, JM21]). In spite of the apparent restrictiveness

in their construction, Abelian Cayley graphs are an extremely rich family containing an array of

interesting graphs. They include expanders (the clique), graphs with poor expansion (the cycle), as

well as examples where both sides of the Cheeger inequality can be tight (the hypercube and the

cycle).

Regarding the spectrum of these graphs, building on Kleiner’s proof of Gromov’s theorem

[Kle10], Lee and Makarychev [LM08] showed that the multiplicity of the 𝑞-th smallest eigenvalue

in an Abelian Cayley graph is at most exp

{
𝑂(log 𝛾𝐺)(log 𝛾𝐺 + log 𝑞)

}
. Here 𝛾𝐺 is the doubling

constant of the graph, a measure of volume growth around any vertex which can be shown to be at

most 2
𝑂(𝑑)

for a 𝑑-regular Abelian Cayley graph [DSC94].

Regarding the algorithmic problem of sparsest cut, Trevisan posed the question of whether

the class of Abelian Cayley graphs admits an 𝑂(1)-approximation in polynomial time [OT21]. This

turns out to be an interesting, multifaceted question with remarkable geometric connections.

Recall that every Abelian group is a product of cyclic groups, thus two extremal Abelian groups

are Z𝑛 and Z𝑛
2
. It is in fact easy to solve sparsest cut when 𝐺 is a Cayley graph over Z𝑛

2
.
1

What

about Cayley graphs over the other extremal case Z𝑛 , for example the 𝑛-cycle?

A key result for the cycle and other low-degree Abelian Cayley graphs is the Buser inequality
𝜙(𝐺) ⩾ Ω(

√
𝜆2/𝑑)where 𝑑 is the degree of the graph [KKRT16, OT21].

This shows that the upper bound in the Cheeger inequality is nearly tight in these graphs.

The Buser inequality comes from an analogous inequality for manifolds with non-negative Ricci

curvature [Bus82], and indeed, Abelian Cayley graphs are examples of graphs with non-negative

discrete curvature [CKK
+
21, KKRT16].

2

The Buser inequality implies that Fiedler’s spectral thresholding algorithm computes a 𝑂(
√
𝑑)-

approximation to 𝜙(𝐺) in Abelian Cayley graphs. It further inspired Oveis Gharan and Trevisan

[OT21] to show that the integrality gap of the ARV relaxation on Abelian Cayley graphs is at most

𝑂(
√
𝑑). Therefore, these approximations for sparsest cut achieve constant approximation ratio for

Abelian Cayley graphs of small degree 𝑑 ⩽ 𝑂(1) but a decaying approximation as 𝑑 grows, up to

𝑑 = log 𝑛 where we meet the 𝑂(
√

log 𝑛) approximation achieved by ARV.

In an effort to achieve 𝑂(1)-approximation for all Abelian Cayley graphs simultaneously, instead

we prefer an algorithm that always achieves 𝑂(1)-factor of approximation, but may have increasing

1
The eigenvectors of Z𝑛

2
are ±1-valued (the Boolean Fourier characters) which implies that (1) the lower bound in the

Cheeger inequality is exact,
1

2
𝜆

2
= 𝜙(𝐺) , (2) there is an eigenvector which is a sparsest cut. Thus, we can solve sparsest

cut exactly in time poly(2𝑛)which is polynomial in the size of the graph. We can’t expect an algorithm with runtime

polynomial in 𝑛 (the description length of the generators) because the minimum distance of a linear code is hard to

approximate up to any constant factor [DMS03].

2
There are several distinct notions of discrete curvature of graphs. It is at least known that Abelian Cayley graphs

are Ricci flat [CKK
+

21], have non-negative Ollivier–Ricci curvature [CKK
+

21], and have non-negative Bakry-Émery

curvature [KKRT16].

3



runtime as we move away from an easy regime. The spectral/semidefinite programming (SDP)

framework for cut problems (e.g., Theorem 1.3) achieves a guarantee of this type.

However, the existing spectral/SDP framework does not give a good runtime for the regime

of low-degree Abelian Cayley graphs. Indeed, this regime appears completely at odds with the

prevailing wisdom regarding these techniques. Low-degree Abelian Cayley graphs are folklore

examples of non-expanding graphs (specifically they satisfy 𝜙(𝐺) ⩽ 𝑂(𝑛−2/𝑑) [Kla81, FMT06])

which also have the Cheeger upper bound nearly tight, due to the Buser inequality. For the simplest

example of the cycle graph, we compute in Appendix B that mul𝜙(𝐺) = Θ(
√
𝑛) for the cycle and

hence a direct application of Theorem 1.3 runs in time 2
𝑂(
√
𝑛)

.

Nonetheless, sparsest cut is effortless to solve on the cycle graph with a spectral algorithm: just

threshold the eigenvector to 𝜆2 (Fiedler’s algorithm). The result of Oveis Gharan and Trevisan also

shows that the ARV relaxation is an 𝑂(1)-approximation on the cycle. This juxtaposition suggests

that spectral and SDP-based approaches may be useful for more graphs than we expect, but also

that existing results are not precisely capturing their capabilities.

1.1 Results

Our main result is to solve sparsest cut in low-degree Abelian Cayley graphs with spectral and

semidefinite programming techniques. This provides an intriguing complement to existing results

by clearly demonstrating how to use these approaches on a distinctly new class of graphs. Our first

theorem is the following:

Theorem 1.5. Let 𝐺 = Cay(Γ, 𝑆) be a Cayley graph over an Abelian group Γ, |Γ| = 𝑛 with generating set
𝑆 ⊆ Γ, |𝑆| = 𝑑. There is an algorithm that finds a set 𝑄 ⊆ [𝑛], |𝑄| ⩽ 𝑛/2 satisfying 𝜙𝐺(𝑄) ⩽ 𝑂(𝜙(𝐺)) in
time 𝑛𝑂(1) · exp

{
𝑑𝑂(𝑑)

}
.

The algorithm is efficient for constant or small 𝑑 and remains sub-exponential for 𝑑 =

𝑜(log(𝑛)/log log(𝑛)) . It should be noted that the setting 𝑑 = Ω(log 𝑛) is a natural threshold

for these graphs. Indeed all Abelian Cayley graphs with 𝑜(log 𝑛) generators have 𝑜(1) expansion

[Kla81, FMT06], whereas a random Abelian Cayley graph with 2 log 𝑛 generators will be an expander

with high probability [AR94].

The first key ingredient behind Theorem 1.5 is the following novel bound on the eigenvalue

multiplicity of Abelian Cayley graphs.

Theorem 1.6. Let 𝐺 = Cay(Γ, 𝑆) be a Cayley graph over an Abelian group Γ, |Γ| = 𝑛 with generating set
𝑆 ⊆ Γ, |𝑆| = 𝑑. For any 𝜆2 ⩽ 𝜏 ⩽ 3

2
,

mul𝜏(𝐺) ⩽ 𝑂

(
𝜏
𝜆2

)
20𝑑

.

By plugging in 𝜏 = 𝜆2 , we obtain a bound of 2
𝑂(𝑑)

on the multiplicity of the 𝜆2 eigenvalue.

Corollary 1.7. Let 𝐺 = Cay(Γ, 𝑆) be a Cayley graph over an Abelian group Γ, |Γ| = 𝑛 with generating set
𝑆 ⊆ Γ, |𝑆| = 𝑑. Then,

mul𝜆2
⩽ 2

𝑂(𝑑)
.
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In comparison, the result of [LM08] would only yield a bound of 2
𝑂(𝑑2)

. In contrast to [LM08],

our proof of Theorem 1.6 is self-contained and does not explicitly rely on tools such as the Poincaré

inequality [Kle10].

For 𝑑 equal to a multiple of log 𝑛, our bound meets the trivial upper bound mul𝜆2
⩽ 𝑛. We

observe that this trivial bound is tight up to a constant factor in the exponent based on Cayley

graphs over Z𝑘
2

coming from linear error-correcting codes. Thus for 𝑑 = Θ(log 𝑛), our 2
𝑂(𝑑)

upper

bound is essentially tight.

Proposition 1.8. Let 𝑛 = 2
𝑘 . There is a family of Cayley graphs Cay(Z𝑘

2
, 𝑆) such that |𝑆| = Θ(log 𝑛) and

mul𝜆2
⩾ 2

Ω(|𝑆|) = 𝑛Ω(1) .

The second key ingredient behind Theorem 1.5 is an algorithm based on enumerating the low

eigenspace of the graph and searching for a sparse cut approximately contained in the subspace.

Although this approach has been used before as part of the threshold rank framework, the way we

analyze it is new.

We re-imagine eigenspace enumeration in the following way: searching for a linear combination

of eigenvectors which approximately equals a cut indicator vector is equivalent to searching for a

hyperplane cut in the spectral embedding. That is, letting 𝜆1 ⩽ . . . ⩽ 𝜆𝑛 be the sorted eigenvalues of

the normalized Laplacian and 𝑣1, . . . , 𝑣𝑛 be the associated eigenvectors , the 𝑘-dimensional spectral

embedding maps vertex 𝑖 ∈ [𝑛] to ((𝑣1)𝑖 , . . . , (𝑣𝑘)𝑖) ∈ R𝑘
. Then,

𝑘∑
𝑖=1

𝑐𝑖𝑣𝑖 ≈ ±1𝑄 ⇐⇒ 𝑄 ≈ hyperplane cut in 𝑘-dimensional spectral

embedding with normal vector ®𝑐 ∈ R𝑘
.

We define the cut dimension to be the minimum dimension 𝑘 such that a sparse cut is approx-

imately a hyperplane cut in the 𝑘-dimensional spectral embedding, or equivalently such that a

sparse cut is approximately contained in the span of the bottom 𝑘 eigenvectors.

For notational convenience, we define the cut dimension of a graph𝐺 in terms of its sparsity𝜓(𝐺)
(Definition 3.5) rather than its conductance. For regular graphs, using 𝜓(𝐺) or 𝜙(𝐺) is equivalent up

to multiplying 𝑐 by a factor of 2 due to Fact 3.6. For general graphs, well-known reductions make

studying the two parameters equivalent up to constant factors [ARV09]. For a subspace 𝑆 ⊆ R𝑛
, let

𝐶𝜀(𝑆) := {𝑥 ∈ R𝑛 : ∥𝑥∥ = 1, ∥Π𝑆𝑥∥2 ⩾ 1− 𝜀} be the set of unit vectors near 𝑆 , let Π𝑆 ∈ R𝑛×𝑛
be the

projection onto 𝑆 , and, for 𝑄 ⊆ [𝑛], let 1̄𝑄 ∈ R𝑛
be the centered version of 1𝑄 i.e. the projection of

1𝑄 orthogonal to the all-1s vector.

Definition 1.9 (Cut Dimension). Let 0 ⩽ 𝜀 ⩽ 1 , 𝑐 ⩾ 1 , let 𝐺 be an 𝑛-vertex graph. The (𝜀, 𝑐)-
cut-dimension of 𝐺, denoted by CD𝜀,𝑐(𝐺) , is the smallest 𝑘 ∈ [𝑛] such that there exists 𝑄 ⊆ [𝑛]
with:

(i) 𝜓𝐺(𝑄) ⩽ 𝑐 ·𝜓(𝐺) .

(ii) 1̄𝑄/∥1̄𝑄∥ ∈ 𝐶𝜀(span(𝑣1, . . . , 𝑣𝑘)) .3

When 𝑐 = 1 we simply write CD𝜀(𝐺) .
3
Because of the centering, it does not matter whether the indicator of 𝑄 is represented as a 0/1 vector or a ±1 vector,

and 𝑄 and 𝑉 \𝑄 are treated equivalently.
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The choice 𝜀 = 0 corresponds to a direction which “exactly” separates the vertices into two

parallel hyperplanes, but as we’ll see in a moment, permitting slack 𝜀 > 0 can allow for a dramatic

reduction in cut dimension. Allowing small constant slack 𝜀 > 0 is permissible as we give an

algorithm for sparsest cut whose running time depends exponentially on the cut dimension.

Theorem 1.10. Let 0 ⩽ 𝜀 < 1/20 , 𝑐 ⩾ 1 and let 𝐺 be an 𝑛-vertex graph. There is an algorithm that finds a
set 𝑄 ⊆ [𝑛] satisfying 𝜓𝐺(𝑄) ⩽ 𝑐 · (1+𝑂(

√
𝜀)) ·𝜓(𝐺) in time 𝑛𝑂(1) · exp{𝑂(CD𝜀,𝑐(𝐺))} .

Comparing this result to Theorem 1.3, it can be shown that CD0(𝐺) ⩾ mul𝜙(𝐺)(𝐺) and CD𝜀(𝐺) ⩽
mul𝑂(𝜀−1𝜙(𝐺))(𝐺) i.e., sparse cuts are mostly contained in the eigenspace up to eigenvalue 𝑂(𝜙(𝐺))
and this is tight when 𝜀 = 0. Surprisingly, the cut dimension with 𝜀 > 0 can be significantly smaller

than mul𝜙(𝐺) , leading to large speedups over Theorem 1.3. The cycle graph provides an illustrative

example with cut dimension 𝑂(1) whereas mul𝜙(𝐺) = Θ(
√
𝑛), as we compute in Appendix B.

We remark that using standard reductions, it is possible to obtain a statement comparable to

Theorem 1.10 for conductance, up to a 𝑂(1)multiplicative factor in the approximation.

We prove that small cut dimension is a general phenomenon for low-degree Abelian Cayley

graphs, as established by the following theorem and its corollary.

Theorem 1.11. Let 𝐺 = Cay(Γ, 𝑆) be a Cayley graph over an Abelian group Γ, |Γ| = 𝑛 with generating set
𝑆 ⊆ Γ, |𝑆| = 𝑑. Then CD𝜀(𝐺) ⩽ mul𝜏(𝐺) for 𝜏 = 𝑂(𝑑 · 𝜙2(𝐺)/𝜀2) .

When 𝑑 · 𝜙2(𝐺) ≪ 𝜙(𝐺) this theorem can lead to a large gap between CD𝜀(𝐺) and mul𝜙(𝐺) and

consequently a large speedup over Theorem 1.3. Combining Theorem 1.6 and Theorem 1.11 shows

the following bound on the cut dimension, which implies the final algorithm in Theorem 1.5.

Corollary 1.12. Let 𝐺 be a degree-𝑑 Abelian Cayley graph and 0 < 𝜀 < 1. Then CD𝜀(𝐺) ⩽ 𝑂
(
𝑑
𝜀2

)
4𝑑

.

Our proof shows a stronger result that all of the sparsest cuts are 1− 𝜀 contained in the span of

the first 𝑑𝑂(𝑑) eigenvectors. That is, all of the sparsest cuts are 1− 𝜀 close to a hyperplane cut in the

𝑑𝑂(𝑑) dimensional spectral embedding of 𝐺.

We can roughly interpret the bound on cut dimension through the lens of recent works

[BBK
+
21, BM23] as proving a “certified” upper bound on the entropy of any distribution of sparsest

cuts. Assuming the existence of a certificate of this type, the cited works show how to solve unique

games instances over the graph, so it is likely that our results can be extended to solve unique games

instances in polynomial time on constant-degree Abelian Cayley graphs.
4

Despite these improvements, we speculate that more efficient algorithms with comparable

guarantees exist. Concretely, we conjecture that the answer to Trevisan’s question [OT21] is yes, that

is, sparsest cut on Abelian Cayley graphs admits a polynomial-time 𝑂(1)-approximation algorithm

regardless of the degree.

Conjecture 1.13. Let 𝐺 = Cay(Γ, 𝑆) be a Cayley graph over an Abelian group Γ of size 𝑛. There is an
algorithm that finds a set 𝑄 ⊆ [𝑛], |𝑄| ⩽ 𝑛/2 satisfying 𝜙𝐺(𝑄) ⩽ 𝑂(𝜙(𝐺)) in time 𝑛𝑂(1).

4
Bafna and Minzer [BM23] informally define a “globally hypercontractive graph” to be one with a succinct and

algorithmic characterization of its small non-expanding sets. Our result informally shows that low-degree Abelian Cayley

graphs have this property.
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This conjecture encompasses a challenging class of “pseudorandom” Abelian Cayley graphs

for 𝑑 ⩾ log 𝑛 including the Grassman-like graph H𝑘,ℓ appearing in the proof of the 2-to-2 Games

Theorem [KMS17, KMS18] and expander-like graphs (note that expander graphs are themselves

easy instances because every cut is an 𝑂(1)-approximation to sparsest cut; putative hard instances

may “look like” expanders but in reality have a non-expanding cut).

A subexponential time algorithm would already be an interesting result, considering that there

is a subexponential time algorithm for unique games [ABS15], but efforts to lift this algorithm back

to sparsest cut have not yet succeeded.

A polynomial-time 𝑂(𝑝)-approximation for sparsest cut on Cayley graphs over Z𝑛
𝑝 follows from

[KLL
+
13]. In Appendix C we provide a self-contained polynomial time 𝑂(𝑝)-approximation to

sparsest cut on Cayley graphs over Z𝑛
𝑝 . This shows that Cayley graphs “near” Z𝑛

2
are also easy, but

we obtain a decaying approximation ratio as 𝑝 increases.

Organization

The rest of the paper is organized as follows. In Section 2 we present the high level ideas behind our

results. In Section 3 we introduce preliminary notions and definitions. Section 4 contains the proof

of Theorem 1.6, Corollary 1.7, and the matching lower bound Proposition 1.8. Section 5 contains

the proof of Theorem 1.11. Section 6 contains the proof of Theorem 1.10 and Theorem 1.5. The

appendices contain results which flesh out the exposition.
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2 Techniques

We present here the main ideas behind our results. Throughout the section we let 𝐺 = Cay(Γ, 𝑆) be

a Cayley graph over an Abelian group and let |Γ| = 𝑛 , |𝑆| = 𝑑 .

Eigenvalue multiplicity (Theorem 1.6) and slow decay of collision probability

The common approach to bounding the eigenvalue multiplicity of graph Laplacians boils down

to relating the local volume growth of induced subgraphs with the spectrum of the whole graph

𝐺 [JTY
+
21, LM08, MRS21]. We remark that weaker bounds are also immediate consequences of

higher order Cheeger inequalities [LRTV12, LOGT14].
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Limiting our discussion to mul𝜆2
(𝐺) , in the context of Abelian Cayley graphs the most relevant

work is by Lee and Makarychev [LM08]. Their notion of volume growth is the doubling constant:
𝛾𝐺 := max𝑡⩾0 |𝐵(2𝑡)|/|𝐵(𝑡)|, where 𝐵(𝑡) is the ball of radius 𝑡 about the identity element of Γ. By

vertex transitivity the choice of the vertex is inconsequential. In their work, the importance of the

doubling constant stems from two properties. For one, because of the geometric structure of the

graph, it is possible to bound the second eigenvalue purely in terms of the graph diameter and 𝛾𝐺 :

𝜆2 ⩽ 𝑂

(
log 𝛾𝐺

diam(𝐺)

)
2

.

This inequality can be understood as a discrete analogue of the Cheng inequality for manifolds

[Che75]. For two, the doubling constant can be used to bound the packing number 𝒩(𝑡) of the

graph 𝐺 using balls of any radius 𝑡:5

𝒩(𝑡) ⩽ |𝐵(diam(𝐺))|
|𝐵(𝑡)| ⩽ 𝛾

log(diam(𝐺)/𝑡)
𝐺

.

Here the first inequality follows from disjointness of the packing and vertex transitivity of the

graph, the second by repeated applications of the bound on the doubling constant. Taken together,

these inequalities establish that

𝒩
(
1/(𝛾𝑂(1)

𝐺
·
√
𝜆2)

)
⩽ 𝛾

𝑂(log 𝛾𝐺)
𝐺

.

At this point, building on [CM97, Kle10] and using the Poincaré inequality, Lee and Makarychev

proceed by contradiction to show that there exists an injective mapping Φ : low𝜆2
→ R𝑚

for

𝑚 = 𝒩(1/(𝛾𝑂(1)
𝐺
·
√
𝜆2)) , where low𝜆2

⊆ R𝑛
is the span of eigenvectors associated with eigenvalues

⩽ 𝜆2 and hence mul𝜆2
⩽ 𝒩(1/(𝛾𝑂(1)

𝐺
·
√
𝜆2)) . For Abelian Cayley graphs it is known that 𝛾𝐺 ⩽ 2

𝑂(𝑑)

[DSC94] and thus they conclude mul𝜆2
(𝐺) = dim(low𝜆2

) ⩽ 2
𝑂(𝑑2)

.

Rather than working through [CM97, Kle10] and the Poincaré inequality, we take a much

more direct (and arguably significantly simpler) approach which directly relates spectral and

combinatorial quantities. The starting point is the notion of 𝑡-step collision probability cp𝑡 . The

𝑡-step collision probability equals the probability that two independent walks of length 𝑡 have the

same endpoint when starting from the same vertex.
6

Thus 1/cp𝑡 serves as a probabilistic analog of

the size of a ball (a similar notion was also used in [MRS21]).

This motivates us to consider the following “smooth” version of the doubling constant:

𝛾𝐶𝑃𝐺 = max

𝑡⩾0

cp𝑡

cp2𝑡
.

We then prove an upper bound on this quantity, 𝛾𝐶𝑃
𝐺

⩽ 2
𝑂(𝑑)

for Abelian Cayley graphs. To

prove this statement, our challenge is to relate walks (not balls) of length 𝑡 to those of length 2𝑡

in an Abelian Cayley graph. First, we can see that in an Abelian Cayley graph, the endpoint of a

walk is completely determined by how many times each generator is chosen, and not on their order.

5
For simplicity of the exposition, our notation here can be inconsistent. In particular, 𝒩(𝑡) is to be understood as the

size of a maximum packing of balls of radius 𝑡 in 𝐺 .

6
A technical detail is that our analysis uses lazy random walks.
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Therefore, we may replace the random walk by a random draw from a multinomial distribution,

using 𝑡 samples of 𝑑 items each occurring with probability 1/𝑑.

From here we can directly relate the multinomial density for 𝑡 to that of 2𝑡. The idea is depicted

in Fig. 2 for the case 𝑑 = 2. The binomial density for 2𝑡 samples is approximately Gaussian with twice

the variance of the density for 𝑡, leading to a direct comparison inequality on the probability density

functions, 𝑝𝑋(𝑥) ⩽ 2𝑝𝑌(𝑥) for all 𝑥 ∈ R. For 𝑑 generators, this idea can be extended (with additional

arguments) to obtain a comparison equality with factor 2
𝑂(𝑑)

which then implies 𝛾𝐶𝑃
𝐺

⩽ 2
𝑂(𝑑)

.

Figure 2: The Gaussian densities 𝑝𝑋 and 𝑝𝑌 for 𝑋 ∼ 𝒩(0, 1) and 𝑌 ∼ 𝒩(0, 2).

On the other hand, in vertex-transitive graphs, the collision probability also equals the average

of the eigenvalues of the adjacency matrix of 𝐺2𝑡
, the 2𝑡-th power of our starting graph. We have

for 𝑡 ⩾ 0 ,

cp𝑡 =
1

𝑛

𝑛∑
𝑖=1

(1−𝜆𝑖)2𝑡 . (2.1)

This is the 2𝑡-th norm of the eigenvalues, also called the 2𝑡-th Schatten norm of the adjacency matrix

of 𝐺 . The crucial consequence of the expressiveness of Eq. (2.1) is that the collision probability ratio

is entirely captured by the spectrum of 𝐺 :

cp𝑡

cp2𝑡
=

∑𝑛
𝑖=1
(1−𝜆𝑖)2𝑡∑𝑛

𝑖=1
(1−𝜆𝑖)4𝑡

. (2.2)

And now the key insight is that for an appropriate choice of 𝑡 = Θ(log mul𝜆2
(𝐺)) , Eq. (2.2) relates

the collision probability ratio, the multiplicity of 𝜆2 and the eigenvalues of 𝐺 . The observation

that it suffices to explore the neighborhood at distance Θ(log mul𝜆2
(𝐺)) ⩽ diam(𝐺) rather than the

entire graph is the fundamental improvement over [LM08] and allows us to conclude,√
mul𝜆2

(𝐺)/2 ⩽
cp𝑡

cp2𝑡
⩽ 𝛾𝐶𝑃𝐺 ⩽ 2

𝑂(𝑑)
.

This bound is best possible up to the constant in the exponent: there exist Abelian Cayley graphs

Cay(F𝑛
2
, 𝑆)with mul𝜆2

⩾ 2
Ω(𝑑)

. The construction of such graphs comes from a characterization of

eigenvalue multiplicity in Cayley graphs over F𝑛
2

in terms of binary linear codes. Every Cayley

graph Cay(F𝑛
2
, 𝑆) corresponds to a binary linear code of dimension 𝑛 and block length |𝑆| = 𝑑 with
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the multiplicity of 𝜆2 corresponding to the number of code words of minimum weight. Thus, the

problem of constructing Abelian Cayley graphs with large eigenvalue multiplicity is equivalent

to constructing binary linear codes with many code words of minimum weight. Using algebraic

geometry codes, Ashikhmin, Barg, Vlădut̨ [ABV01] constructed a family of binary linear codes with

linear rate and distance, and with an exponential number of minimum-weight codewords, which

furnishes the desired construction.

Sparse cuts are approximately low-dimensional (Theorem 1.11)

To show that all sparse cuts of 𝐺 are approximately low-dimensional, we refine the Buser inequality

[KKRT16, OT21]. We extend the proof by Oveis Gharan and Trevisan [OT21] which analyzes the

probability of a length-2𝑡 random walk 𝑋0, . . . ,𝑋2𝑡 crossing a cut 𝑄. This measures the expansion

of 𝑄 in the graph 𝐺2𝑡
and their combinatorial analysis proves that,

𝜙𝐺2𝑡 (𝑄) ⩽ 2

√
𝑡𝑑 · 𝜙𝐺(𝑄) .

As before, the crucial property of Abelian Cayley graphs being used in their proof is that it suffices

to count how many times each generator is used by the walk. In the proof of this inequality, it is

also important that generators 𝑔 and −𝑔 cancel out, which allows to bound the expected number of

steps in the direction of generator 𝑔 by only 𝑂(
√
𝑡/𝑑).

Furthermore, the expansion can be expressed spectrally as the Rayleigh quotient of the vector

1𝑄 . Let 1𝑄 =
∑
𝑖⩾1

𝑞𝑖𝑣𝑖 be the representation of the indicator vector of the set 𝑄 in the eigenbasis

𝑣1, . . . , 𝑣𝑛 of the graph. Then,

𝜙𝐺2𝑡 (𝑄) = 1

|𝑄|

𝑛∑
𝑖=1

𝑞2

𝑖 · (1− (1−𝜆𝑖)2𝑡) ⩽ 2

√
𝑡𝑑 · 𝜙𝐺(𝑄) .

This gives a lower bound on 𝜙𝐺(𝑄)which can be used to prove the Buser inequality. Instead, we

proceed from this equation to establish our theorem. Simple manipulations show that with the

choice 𝑡 = Θ(𝜀2𝑑−1𝜙−2) all but 𝜀 of the spectral mass must be contained on eigenvalues up to 1/𝑡.

If one is only interested in algorithms for sparsest cut and not eigenvalue multiplicities,

considering that the proof techniques so far are fundamentally combinatorial, it is natural to wonder

if the spectral component connecting the two above proofs can be skipped. If so, this would lead to

a purely combinatorial algorithm that enumerates the sparse cuts.

ARV, eigenspace enumeration, and the cut dimension (Theorem 1.10)

A valuable consequence of the above two structural results is that, whenever 𝑑 =

𝑜
(
log(𝑛)/log log(𝑛)

)
, there is a low-dimensional subspace 𝑆 ⊆ R𝑛

which approximately contains

every sparsest cut 𝑄 ⊂ [𝑛] of an Abelian Cayley graph, in the senseΠ𝑆1̄𝑄
2

⩾ (1− 𝜀)
1̄𝑄

2

. (2.3)

At this point we may forget the graph 𝐺 was built from an Abelian group and simply assume it

satisfies Eq. (2.3) for some given subspace 𝑆 of dimension CD𝜀(𝐺) .
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We search for 𝑄 by enumerating over the unit vectors in 𝑆, which will successfully recover 𝑄 if

1𝑄 or 1̄𝑄 is exactly contained in 𝑆 . But this approach breaks down under the weaker guarantee

of Eq. (2.3) since all enumerated indicator vectors 1𝑅 ∈ 𝑆 may have |𝑅△𝑄| = Θ(𝜀) ·min{|𝑄| , |𝑅|}.
Changing a small fraction of vertices in 𝑄 may destroy the sparsity and cause 𝜙(𝑅) ≫ 𝜙(𝑄) , for

example if 𝑄 is a bisection of the 𝑛-cycle graph and 𝑅 adds 𝜀𝑛 additional vertices. There could be

exponentially many cuts within 𝜀 distance of 𝑆 even if dim(𝑆) = 1, so a naive brute force is not

sufficient to find the last bit of the cut.

Taking a step back, we would like to solve the algorithmic problem of: given a set 𝑅 ⊂ [𝑛]
(corresponding to an enumerated vector 1𝑅 ∈ 𝑆), find the cut with the lowest conductance among all

cuts correlated with 𝑅 . This question is known in the literature as the "cut improvement problem"

[AL08, LLDM09, MOV09], and can be seen as an instantiation of the modern framework of (machine)

learning augmented algorithms (e.g. see [BEX24, CAdG
+
24] for the max cut analogue).

Our approach to this problem is to consider the canonical SDP relaxation of sparsest cut [LR99]

with an additional constraint that forces solutions to be correlated with 𝑅 : 7

∑
𝑖∈𝑅
∥1− 𝑣𝑖∥22 +

∑
𝑖∉𝑅

∥𝑣𝑖∥22 ⩽ 𝜀|𝑅| . (2.4)

Once we add this constraint, in fact the SDP relaxation can be rounded into an 𝑂(1)-approximation

using a simple “ball rounding”. Assume for simplicity that |𝑅| = Θ(𝑛) i.e. we are in the balanced

separator case. Then Eq. (2.4) implies that in any feasible solution, there must be Ω(𝑛) vectors 𝑣𝑖

such that ∥1 − 𝑣𝑖∥2
2
⩽ 𝜀 and Ω(𝑛) vectors 𝑣𝑖 such that ∥𝑣𝑖∥2

2
⩽ 𝜀. That is, there exist two sets of

vectors 𝐴, 𝐵 ⊆ [𝑛] of linear size Ω(𝑛) at ℓ 2

2
-distance at least 1− 2𝜀 = Ω(1) .

To understand the importance of this observation, recall that the ARV algorithm relies on a

key structural theorem showing that any feasible embedding must contain two sets 𝐴, 𝐵 of size

Ω(𝑛) at distance at least 𝐷 = Ω(1/
√

log 𝑛) . This property is then used in the rounding to obtain a

𝑂(𝐷)-approximation. The above reasoning allows us to obtain a stronger structural theorem with

𝐷 ⩾ Ω(1) , and thus use (simple and self-contained) ARV rounding techniques to find a cut with

conductance at most 𝑂(𝐷) · 𝜙(𝐺) ⩽ 𝑂(𝜙(𝐺)) .
Remark 2.1. Although we have not checked the details, a combination of eigenspace enumeration

with known algorithms for the cut improvement problem [AL08, MOV09] is also likely to yield a

comparable result. Similarly, we believe that the analysis of [BRS11, GS13] could be strengthened

to reproduce the result, for example using a single sum-of-squares relaxation of degree 𝑑𝑂(𝑑).
Nevertheless, we believe the simplicity of the analysis makes our algorithm a valuable contribution.

3 Preliminaries

We establish the notation used throughout the paper along with some preliminary notions.

We use 𝑒1, . . . , 𝑒𝑛 ∈ R𝑛
to denote the standard basis of R𝑛

. The norm ∥·∥ is the ℓ2 norm. For a

subspace 𝑆 ⊆ R𝑛
, we denote by Π𝑆 the orthogonal projection onto 𝑆 . For a set 𝑄 ⊆ [𝑛]we denote

7
In Section 6 we actually use the degree-4 sum-of-squares relaxation of sparsest cut. The motivation behind this

choice is purely stylistic.
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by 1𝑄 ∈ {0, 1}𝑛 its indicator vector and 1 denotes the all-1s vector. We let

�̄� = 𝑥 − ⟨𝑥,1⟩
𝑛 · 1

to be the projection of 𝑥 orthogonal to 1.

In this paper, we focus exclusively on undirected graphs which may have self-loops or multiedges,

which we will refer to as graphs. We always use 𝑛 to denote the number of vertices in a graph 𝐺

and we assume 𝑉(𝐺) = [𝑛]. We denote by A(𝐺) ∈ R𝑛×𝑛
the normalized adjacency matrix,

A(𝐺)𝑖 𝑗 =


1√
deg𝐺(𝑖)deg𝐺(𝑗)

if 𝑖 𝑗 ∈ 𝐸(𝐺)

0 otherwise ,

where deg𝐺(𝑖) is the degree of 𝑖 in 𝐺. When the graph is regular we use 𝑑 to denote its degree. In

some of these definitions we may omit 𝐺 when the context is clear.

Let D(𝐺) be the diagonal matrix with entries deg𝐺(𝑖). The normalized Laplacian of 𝐺 is defined

as L(𝐺) = I −A(𝐺) . For a matrix M ∈ R𝑛×𝑛
we denote by 𝜆1(M) ⩽ . . . ⩽ 𝜆𝑛(M) its eigenvalues.

The eigenvalues of a graph 𝐺 are the eigenvalues of its normalized Laplacian L(𝐺) and are

denoted 0 = 𝜆1(𝐺) ⩽ 𝜆2(𝐺) ⩽ . . . ⩽ 𝜆𝑛(𝐺) to the associated eigenvectors 𝑣1(𝐺), . . . , 𝑣𝑛(𝐺). We use

1 = 𝛼1(𝐺) ⩾ . . . ⩾ 𝛼𝑛(𝐺) for the eigenvalues of the normalized adjacency matrix, in descending

order. Note that for all 𝑖 ∈ [𝑛], 𝛼𝑖(𝐺) = 1 − 𝜆𝑖(𝐺). When 𝐺 is regular, A(𝐺) equals W(𝐺) which

denotes the transition matrix of the simple random walk on 𝐺. When 𝐺 is not regular, A(𝐺) and

W(𝐺) are similar (under conjugation by D1/2
) so they still have the same eigenvalues.

For a vertex 𝑖 ∈ 𝑉(𝐺) we denote by 𝑁𝐺(𝑖) its set of neighbors. For a set 𝑄 ⊆ 𝑉(𝐺) we let

𝜕𝑄 = {(𝑖, 𝑗) ∈ 𝐸(𝐺) : 𝑖 ∈ 𝑄, 𝑗 ∉ 𝑄} . We define the volume of a set𝑄 ⊆ 𝑉(𝐺)by vol(𝑄) = ∑
𝑖∈𝑄 deg𝐺(𝑖).

For 𝑡 ∈ N we denote by 𝐺𝑡 the multi-graph obtained by taking an edge for each length-𝑡 walk in 𝐺.

Note that A(𝐺𝑡) = A(𝐺)𝑡 .

Fact 3.1. For all graphs 𝐺, L(𝐺) is a symmetric positive semidefinite (PSD) matrix with all eigenvalues in
the range [0, 2].

Fact 3.2. Let M ∈ R𝑛×𝑛 . If 𝜆 is an eigenvalue of M, then 𝜆𝑡 is an eigenvalue of M𝑡
. Furthermore, if M ⪰ 0

then for any 𝑖 ∈ [𝑛] , 𝜆𝑖(M𝑡) = 𝜆𝑖(M)𝑡 .

An immediate corollary is the following relation between the spectrum of a graph and its

powers.

Fact 3.3. Let 𝐺 be a graph and let 𝑡 ∈ N . For any 𝑖 ∈ [𝑛] it holds

𝜆𝑖(𝐺𝑡) = 1− (1−𝜆𝑖(𝐺))𝑡 .

We will make use of the following definition concerning the span of eigenvectors associated

with small eigenvalues of the Laplacian.

Definition 3.4 (low eigenspace). For a graph 𝐺 and 0 ⩽ 𝜏 ⩽ 2 we define low𝜏(𝐺) to be the span of

the eigenvectors of 𝐺 associated with eigenvalues 𝜆 ⩽ 𝜏 . Notice that mul𝜏(𝐺) = dim(low𝜏(𝐺)) .

The sparsity of a graph is a function closely related to the conductance.
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Definition 3.5 (Sparsity). Let 𝐺 be an 𝑛-vertices graph and let (𝑄,𝑉 \𝑄) be a partition of its vertex

set. The sparsity of the cut (𝑄,𝑉 \𝑄) is defined as

𝜓𝐺(𝑄) :=
|𝜕𝑄|

|𝑄|(𝑛 − |𝑄|) .

The sparsity of 𝐺 is then 𝜓(𝐺) := min𝑄⊂𝑉 𝜓𝐺(𝑄) .

Well-known reductions exist between sparsity and conductance (see [ARV09]). Hence, we will

at times consider the sparsity of a set rather than its conductance. For regular graphs we have the

following relation.

Fact 3.6. Let 𝐺 be a 𝑑-regular graph with 𝑛 vertices and 𝑄 ⊆ [𝑛] , |𝑄| ⩽ 𝑛/2 . Then,

𝜙𝐺(𝑄) ⩽
𝑛

𝑑
·𝜓𝐺(𝑄) ⩽ 2𝜙𝐺(𝑄) .

Cheeger’s inequality provides a quantitative relation between eigenvalues and conductance.

Theorem 3.7 (Cheeger inequality). Let 𝐺 be a graph. Then 𝜆2

2
⩽ 𝜙(𝐺) ⩽

√
2𝜆2 .

Conductance and sparsity are Rayleigh quotients of the indicator function of the cut.

Fact 3.8. Let 𝐺 be a graph. For all 𝑄 ⊆ [𝑛],

𝜙𝐺(𝑄) =
1𝑇
𝑄

D1/2L(𝐺)D1/21𝑄
1𝑇
𝑄

D1𝑄

(
=

1𝑇
𝑄

L(𝐺)1𝑄
1𝑇
𝑄

1𝑄
if 𝐺 is regular

)
,

𝑛 ·𝜓𝐺(𝑄) =
1̄𝑇
𝑄
(D−A0)1̄𝑄

1̄𝑇
𝑄

1̄𝑄

(
= 𝑑 ·

1̄𝑇
𝑄

L(𝐺)1̄𝑄
1̄𝑇
𝑄

1̄𝑄
if 𝐺 is 𝑑-regular

)
,

where A0 is the unnormalized adjacency matrix.

We will make use of Stirling’s approximation:

Fact 3.9 (Stirling’s approximation [Wik]). 2

√
𝑡
(
𝑡
𝑒

) 𝑡 ⩽ 𝑡! ⩽ 2

√
2𝑡

(
𝑡
𝑒

) 𝑡 for all 𝑡 ∈ N \ {0}.

3.1 Abelian Cayley graphs

For an Abelian group Γ, we use 0 ∈ Γ for the identity element and −𝑥 to denote the inverse of 𝑥 ∈ Γ.

We restate the definition of Abelian Cayley graphs and recall some of the nice properties of this

family of graphs.

Definition (Restatement of Definition 1.4). Let Γ be an Abelian group and let 𝑆 be a multiset (called

the set of generators) from Γ such that the multiplicity of 𝑥 ∈ 𝑆 and −𝑥 ∈ 𝑆 is the same for all 𝑥 ∈ Γ.

The Abelian Cayley graph of Γ generated by 𝑆, denoted Cay(Γ, 𝑆), is the graph with vertex set Γ and

edges {(𝑣, 𝑣 + 𝑠) : 𝑣 ∈ Γ, 𝑠 ∈ 𝑆}.

Note that 𝐺 is |𝑆|-regular and may have multiedges or self-loops. When the generating set is

symmetric, the graph is undirected. For an Abelian Cayley graph 𝐺 = Cay(Γ, 𝑆), the characters

associated with the group Γ are a useful tool for analyzing the graph’s spectrum.
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Definition 3.10 (Characters). A character 𝜒 of a finite abelian group Γ is a group homomorphism

𝜒 : Γ→ C \ {0}.

The set of characters of Γ along with the operation of point-wise multiplication forms a group

called the dual group of Γ and is denoted by Γ̂. A finite abelian group is isomorphic to its dual. This

allows us to associate each element 𝑔 ∈ Γ with a character 𝜒𝑔 ∈ Γ̂.

It is well-known that the characters are a common eigenbasis for all Cayley graphs over Γ [Tre17].

Fact 3.11. For all finite Abelian groups Γ, the characters {𝜒𝑔}𝑔∈Γ are a basis of orthogonal eigenfunctions
for all adjacency matrices of Cayley graphs over Γ. Letting 𝐺 = Cay(Γ, 𝑆), then the eigenvalue of A(𝐺) on
eigenfunction 𝜒𝑔 is 𝛼𝑔 := 1

|𝑆|
∑
𝑠∈𝑆 𝜒𝑔(𝑠) .

4 The low eigenspace of Abelian Cayley graphs

In this section, we study the low eigenspace of Abelian Cayley graphs and prove Theorem 1.6. We

do so by analyzing the collision probability of a random walk in 𝐺.

Definition 4.1 (𝑡-step lazy collision probability). Let 𝐺 be a graph and 𝜋 be a distribution over𝑉(𝐺).
The collision probability of 𝜋 is defined by cp(𝜋) = ∥𝜋∥2

2
= P𝑥,𝑥′∼𝜋(𝑥 = 𝑥′) . Fixing a vertex 𝑥0 ∈ 𝑉(𝐺),

the 𝑡-step lazy collision probability is defined by cp𝑡 = cp

( (
1

2
I+ 1

2
A
) 𝑡1𝑥0

)
.

The choice of 𝑥0 is irrelevant for vertex-transitive graphs such as Abelian Cayley graphs, so we

assume 𝑥0 is the identity element of the group. The next Lemma gives a spectral interpretation of

cp𝑡 as the moments of the uniform distribution over the eigenvalues of the normalized adjacency

matrix (a.k.a the moments of the empirical spectral distribution).

Lemma 4.2. Let 𝐺 be a vertex-transitive graph. Let 𝑋0,𝑋1, . . . ,𝑋2𝑡 be a simple random walk initialized
arbitrarily. Then

cp𝑡 = P(𝑋2𝑡 = 𝑋0) =
1

𝑛

𝑛∑
𝑖=1

(
1− 𝜆𝑖

2

)
2𝑡

.

Proof. Let �̃�0, . . . , �̃�𝑡 be an independent simple random walk initialized at the starting point 𝑋0.

The walks of length 2𝑡 which return to 𝑋0 are in bĳection with two colliding walks of length 𝑡, so

cp𝑡 = P(𝑋𝑡 = �̃�𝑡) = P(𝑋2𝑡 = 𝑋0).
On the other hand, the diagonal elements of the transition matrix equal the returning probabilities

of a random walk. Therefore

P(𝑋2𝑡 = 𝑋0) =
(

1

2
I+ 1

2
A
)
2𝑡

𝑋0,𝑋0

=
1

𝑛
Tr

( (
1

2
I+ 1

2
A
)
2𝑡
)
=

1

𝑛

𝑛∑
𝑖=1

(
1− 𝜆𝑖

2

)
2𝑡

where we have used vertex transitivity to introduce the trace. □

To bound the multiplicity of eigenvalues close to 𝜆2, we analyze the ratio cp𝑡/cp𝑡(𝜅+1) where

𝑡 ∈ N and 𝜅 ⩾ 1 are parameters. Concretely, Theorem 1.6 will follow from a combination of the

next two statements. The first lower bounds the ratio cp𝑡/cp𝑡(𝜅+1) in terms of the dimension of low𝜏

using an appropriate choice of 𝑡 and 𝜅.
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Lemma 4.3. Let 𝐺 = Cay(Γ, 𝑆) be an 𝑛-vertex Abelian Cayley graph. Suppose 𝜆2 ⩽ 𝜏 ⩽ 3

2
and let

𝜅 = ⌈𝜏/𝜆2⌉. Then for 𝑡 = ⌊ln(dim(low𝜏))/4𝜏⌋, we have

cp𝑡

cp𝑡(𝜅+1)
⩾

√
dim(low𝜏)/(2𝑒3) .

Proof. First notice that for any 𝑖 ⩾ 2 , it holds 0 ⩽ (1 − 𝜆𝑖/2) ⩽ (1 − 𝜆2/2) since 𝜆2 ⩽ 𝜆𝑖 ⩽ 2 . By

applying Lemma 4.2, we have

cp𝑡

cp𝑡(𝜅+1)
=

∑
𝑖∈[𝑛](1−𝜆𝑖/2)2𝑡∑

𝑖∈[𝑛](1−𝜆𝑖/2)2𝑡(𝜅+1) =

∑
𝑖∈[𝑛](1−𝜆𝑖/2)2𝑡

1+∑
𝑖⩾2
(1−𝜆𝑖/2)2𝑡(𝜅+1) .

We show the following lower bound,∑
𝑖∈[𝑛]
(1−𝜆𝑖/2)2𝑡 ⩾ max

(
dim(low𝜏) · 𝑒−2𝑡𝜏

, 𝑒2𝑡𝜏
∑
𝑖⩾2

(1−𝜆𝑖/2)2𝑡(𝜅+1)
)
. (4.1)

First observe that if 𝜆𝑖 ⩽ 𝜏, then (1 − 𝜆𝑖/2)2𝑡 ⩾ (1 − 𝜏/2)2𝑡 . Now by ignoring all 𝜆𝑖 that are not in

low𝜏, we have ∑
𝑖∈[𝑛]
(1−𝜆𝑖/2)2𝑡 ⩾ dim(low𝜏) · (1− 𝜏/2)2𝑡

⩾ dim(low𝜏) · 𝑒−2𝑡𝜏
,

where the last inequality uses the fact that 1− 𝑥/2 ⩾ 𝑒−𝑥 for 𝑥 ∈ [0, 3/2]. Now, note that

(1−𝜆𝑖/2)2𝑡 = (1−𝜆𝑖/2)−2𝑡𝜅 · (1−𝜆𝑖/2)2𝑡(𝜅+1)
.

This implies, (1−𝜆𝑖/2)2𝑡 ⩾ (1−𝜆2/2)−2𝑡𝜅 · (1−𝜆𝑖/2)2𝑡(𝜅+1)
. In particular, we can use this to obtain∑

𝑖∈[𝑛]
(1−𝜆𝑖/2)2𝑡 ⩾ (1−𝜆2/2)−2𝑡𝜅 ·

∑
𝑖⩾2

(1−𝜆𝑖/2)2𝑡(𝜅+1)

⩾ 𝑒2𝑡𝜏 ·
∑
𝑖⩾2

(1−𝜆𝑖/2)2𝑡(𝜅+1)
.

The final inequality uses the fact that 𝜆2𝜅 ⩾ 𝜏 and 1 − 𝑥/2 ⩾ 𝑒−𝑥 for 𝑥 ∈
[
0,

3

2

]
. This proves (4.1).

Observe, that for all non-negative numbers 𝑎, 𝑏, 𝑐, 𝑑 with 𝑐, 𝑑 > 0 we have max{𝑎, 𝑏}/(𝑐 + 𝑑) ⩾
1

2
min{𝑎/𝑐, 𝑏/𝑑}. This implies the following inequality

max

(
dim(low𝜏) · 𝑒−2𝑡𝜏

, 𝑒2𝑡𝜏 ·∑𝑖⩾2
(1−𝜆𝑖/2)2𝑡(𝜅+1))

1+∑
𝑖⩾2
(1−𝜆𝑖/2)2𝑡(𝜅+1) ⩾

1

2

min

(
dim(low𝜏) · 𝑒−2𝑡𝜏

, 𝑒2𝑡𝜏)
. (4.2)

Choosing 𝑡 = ⌊ln(dim(low𝜏))/4𝜏⌋gives the desired inequality. The factor of 𝑒3
in the denominator

comes from the fact that 𝑒2𝜏⌊ln(dim(low𝜏))/4𝜏⌋ ⩾ 𝑒2𝜏( 1

4𝜏 ln(dim(low𝜏))/4𝜏−1) ⩾
√

dim(low𝜏)/𝑒2𝜏
and the

assumption 𝜏 ⩽ 3/2. □

The second statement we prove upper bounds the ratio cp𝑡/cp2𝑡 with a function that depends

on the degree 𝑑 of the graph but not on 𝑡 or 𝑛.
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Lemma 4.4. Let 𝐺 = Cay(Γ, 𝑆) be a degree 𝑑 Abelian Cayley graph. Then, for every integer 𝑡 ⩾ 0 ,

cp𝑡

cp2𝑡
⩽ (2𝑒)4𝑑 .

Proof. To simplify the analysis of the quantity cp𝑡 , we

1. replace the lazy random walk with non-lazy random walk by introducing 𝑑 new copies of the

identity element as generators, and

2. assume each generator occurs with multiplicity 2. This can be done by making a copy of

every generator. Note this does not change the random walk matrix and hence the collision

probabilities are preserved.

In the above two operations we introduce 3𝑑 new generators (2𝑑 copies of the identity and 1 copy

of each the original generators). To simplify notation, we assume 𝑆 = {𝑠1, . . . , 𝑠𝑑} satisfies the

assumptions above and replace 𝑑 with 4𝑑 in the final bound.

Let 𝑋0,𝑋1, . . . ,𝑋2𝑡 be a simple random walk in 𝐺 initialized at the identity element. Because Γ

is Abelian, the position of 𝑋𝑡 at any time can be compressed into the count of the number of times

that each generator 𝑠𝑖 has been used as a step, which we write as the tuple 𝐶(𝑡) ∈ N𝑑
. The returning

walks of length 2𝑡 are exactly those 𝑐 ∈ N𝑑
such that

∑𝑑
𝑖=1

𝑐𝑖𝑠𝑖 = 0 (in Γ) and

∑𝑑
𝑖=1

𝑐𝑖 = 2𝑡 (in N). We

have:

cp𝑡

cp2𝑡
=

P(𝑋2𝑡 = 𝑋0)
P(𝑋4𝑡 = 𝑋0)

=

∑
𝑐∈N𝑑 :

∑𝑑
𝑖=1

𝑐𝑖 𝑠𝑖=0
P(𝐶(2𝑡) = 𝑐)∑

𝑐∈N𝑑 :
∑𝑑
𝑖=1

𝑐𝑖 𝑠𝑖=0
P(𝐶(4𝑡) = 𝑐)

We define 𝜇 ∈ N𝑑
to be an integer vector whose entries are approximately

𝑡
𝑑 .

Claim 4.5. There exists 𝜇 ∈ N𝑑
such that

∑𝑑
𝑖=1

𝜇𝑖 = 2𝑡,
∑𝑑
𝑖=1

𝜇𝑖𝑠𝑖 = 0, and |𝜇𝑖 −𝜇𝑗| ⩽ 1 for all 𝑖, 𝑗 ∈ [𝑑].

Proof of claim. Since 𝑆 is a symmetric set of generators and each generator occurs with multiplicity

2, we can pair up the generators with their inverses (for generator being its own inverse just pair

another copy of it since we assume the number is even). Let 𝑥 ∈ Z
𝑑/2
⩾0

such that

∑
𝑖∈[𝑑/2] 𝑥𝑖 = 𝑡 and

for all 𝑖, 𝑗 ∈ [𝑑/2] we have |𝑥𝑖 − 𝑥 𝑗| ⩽ 1. Now for every 𝑟 ∈ [𝑑/2] define 𝜇𝑖 = 𝜇𝑗 = 𝑥𝑟 where (𝑖, 𝑗) is
the 𝑟-th pair of generators. It can be verified that 𝜇 satisfies the desired properties. □

Let 𝜇 ∈ N𝑑
be as in the Claim. Then, by ignoring terms in the denominator except for those

with 𝑐𝑖 ⩾ 𝜇𝑖 for all 𝑖,∑
𝑐∈N𝑑 :

∑𝑑
𝑖=1

𝑐𝑖 𝑠𝑖=0
P(𝐶(2𝑡) = 𝑐)∑

𝑐∈N𝑑 :
∑𝑑
𝑖=1

𝑐𝑖 𝑠𝑖=0
P(𝐶(4𝑡)) = 𝑐)

⩽

∑
𝑐∈N𝑑 :

∑𝑑
𝑖=1

𝑐𝑖 𝑠𝑖=0
P(𝐶(2𝑡) = 𝑐)∑

𝑐∈N𝑑 :
∑𝑑
𝑖=1

𝑐𝑖 𝑠𝑖=0
P(𝐶(4𝑡) = 𝑐 + 𝜇)

.

The point of the inequality is that it now suffices to show the direct comparison inequality

P(𝐶(2𝑡)=𝑐)
P(𝐶(4𝑡)=𝑐+𝜇) ⩽ (2𝑒)

𝑑
for all 𝑐 ∈ N𝑑

with

∑𝑑
𝑖=1

𝑐𝑖 = 2𝑡 (dropping the constraint that

∑𝑑
𝑖=1

𝑐𝑖𝑠𝑖 = 0 in Γ).

Towards this, we have

P(𝐶(2𝑡) = 𝑐)
P(𝐶(4𝑡) = 𝑐 + 𝜇)

=

(
2𝑡

𝑐1,...,𝑐𝑑

)
𝑑4𝑡(

4𝑡
𝑐1+𝜇1,...,𝑐𝑑+𝜇𝑑

)
𝑑2𝑡

=
(2𝑡)!(𝑐1 + 𝜇1)! · · · (𝑐𝑑 + 𝜇𝑑)!𝑑2𝑡

(4𝑡)!𝑐1! · · · 𝑐𝑑!
.
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We prove by “discrete gradient descent” that this quantity is maximized when 𝑐 = 𝜇. Let 𝑐′ be 𝑐

with 𝑐𝑖 replaced by 𝑐𝑖 + 1 and 𝑐 𝑗 replaced by 𝑐 𝑗 − 1. The ratio of the consecutive terms is,

P(𝐶(2𝑡) = 𝑐′)
P(𝐶(4𝑡)) = 𝑐′ + 𝜇)

· P(𝐶
(4𝑡) = 𝑐 + 𝜇)

P(𝐶(2𝑡) = 𝑐)
=
(𝑐𝑖 + 𝜇𝑖 + 1)𝑐 𝑗
(𝑐𝑖 + 1)(𝑐 𝑗 + 𝜇𝑗)

.

This is at least 1 if and only if

𝑐 𝑗
𝑐𝑖+1

⩾
𝜇𝑗
𝜇𝑖

. If this holds, the change (𝑐𝑖 , 𝑐 𝑗) → (𝑐𝑖 + 1, 𝑐 𝑗 − 1) increases

the value. This implies that 𝑐 = 𝜇 at the maximizer (since if 𝑐 ≠ 𝜇, there is at least once coordinate

which is smaller than 𝜇 and one coordinate which is larger than 𝜇 in which we can move to increase

the value).

Finally, we bound the value at the maximizer.

P(𝐶(2𝑡) = 𝜇)
P(𝐶(4𝑡) = 2𝜇)

=
(2𝑡)!𝑑2𝑡

∏𝑑
𝑖=1
(2𝜇𝑖)!

(4𝑡)! ∏𝑑
𝑖=1

𝜇𝑖 !

⩽ 2
𝑑/2+1

√
2𝑡(2𝑡/𝑒)2𝑡𝑑2𝑡

∏𝑑
𝑖=1

√
2𝜇𝑖(2𝜇𝑖/𝑒)2𝜇𝑖√

4𝑡(4𝑡/𝑒)4𝑡 ∏𝑑
𝑖=1

√
𝜇𝑖(𝜇𝑖/𝑒)𝜇𝑖

(Fact 3.9)

= 2
𝑑 ·
𝑑2𝑡

∏𝑑
𝑖=1

2
2𝜇𝑖𝜇

𝜇𝑖
𝑖

2
4𝑡(2𝑡)2𝑡

⩽ 2
𝑑 ·
𝑑2𝑡

∏𝑑
𝑖=1

2
2𝜇𝑖 (2𝑡𝑑 + 1)𝜇𝑖

2
4𝑡(2𝑡)2𝑡 (𝜇𝑖 ⩽

2𝑡

𝑑
+ 1)

= 2
𝑑 ·

(
𝑑

2𝑡

)
2𝑡 (

2𝑡

𝑑
+ 1

)
2𝑡

(
𝑑∑
𝑖=1

𝜇𝑖 = 2𝑡

)
= 2

𝑑

(
1+ 𝑑

2𝑡

)
2𝑡

⩽ (2𝑒)𝑑 (1+ 𝑥 ⩽ 𝑒𝑥) .

Which concludes the proof. □

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. The Theorem follows immediately combining Lemma 4.3 and Lemma 4.4. By

Lemma 4.4, for every integer 𝑡 ⩾ 0 we have cp𝑡/cp2𝑡 ⩽ (2𝑒)4𝑑 ⩽ 2
10𝑑

. Let 𝜅 = ⌈𝜏/𝜆2⌉. Observe,√
dim(low𝜏)/(2𝑒3) ⩽ cp𝑡

cp𝑡(𝜅+1)
⩽

cp𝑡

cp2𝑡
· cp2𝑡

cp4𝑡
· · ·

cp𝑡2⌈log(𝜅+1)⌉−1

cp𝑡2⌈log(𝜅+1)⌉

⩽ 2
10𝑑⌈log(𝜅+1)⌉

⩽ 2
10𝑑 log(𝑂(𝜏/𝜆2))

,

where the last inequality uses the fact that 𝜅 ⩽ 2𝜏/𝜆2 and log(2𝜏/𝜆2 + 1) ⩽ log(3𝜏/𝜆2). This implies,

dim(low𝜏) ⩽ 2
20𝑑 log(𝑂(𝜏/𝜆))+11

⩽ 𝑂

(
𝜏
𝜆2

)
20𝑑

.

□
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4.1 Eigenvalue multiplicity and binary linear codes

We use the relationship between binary linear codes and Cayley graphs over F𝑘
2

to construct Abelian

Cayley graphs with large eigenvalue multiplicity for the matching lower bound in Proposition 1.8.

We begin with some basic definitions from coding theory found in [GRS19].

Definition 4.6 (Binary Linear Code). A binary linear code 𝐶 of dimension 𝑘 and block length 𝑛 is a

𝑘-dimensional linear subspace of F𝑛
2
.

The distance between two elements 𝑥, 𝑦 ∈ F𝑛
2
, denoted by Δ(𝑥, 𝑦) is the number of positions

in which 𝑥 and 𝑦 differ. The relative distance between 𝑥 and 𝑦 is 𝛿(𝑥, 𝑦) = Δ(𝑥, 𝑦)/𝑛. The distance
of a code 𝐶 is Δ(𝐶) = min𝑐≠𝑐′ Δ(𝑐, 𝑐′) and the relative distance is 𝛿(𝐶) = Δ(𝐶)/𝑛. Linear codes have

the nice property that the distance can be rewritten as Δ(𝐶) = min𝑐≠0 |𝑐|, where |𝑐| = Δ(𝑐, 0) is the

Hamming weight of 𝑐. The relative Hamming weight of a vector 𝑐 is |𝑐|/𝑛.

We write elements of F𝑛
2

as row vectors. A generator matrix for the code 𝐶 is a rank 𝑘 matrix

G ∈ F𝑘×𝑛
2

whose row span is 𝐶. Let 𝑆 ⊆ F𝑘
2

be a set of size 𝑛 and consider the Cayley graph

Cay(F𝑘
2
, 𝑆). We can define a binary linear code with generator matrix

G𝑆 =

 𝑠1 𝑠2 . . . 𝑠𝑛

 .

Viewing G𝑆 as a linear map from F𝑘
2

to F𝑛
2

we have that 𝑚G𝑆 = (⟨𝑠1,𝑚⟩, . . . , ⟨𝑠𝑛 ,𝑚⟩). The code

generated by G𝑆 is 𝐶𝑆 = Im(G𝑆) ⊆ F𝑛
2
. The relationship between Cay(F𝑘

2
, 𝑆) and 𝐶𝑆 is summarized

by the following well-known fact, which is a consequence of the eigenvectors for F𝑘
2

being the

Boolean Fourier characters (Fact 3.11).

Proposition 4.7. Let 𝑆 ⊆ F𝑘
2

such that G𝑆 has rank 𝑘. Let 𝜆2 be the second smallest normalized Laplacian
eigenvalue of Cay(F𝑘

2
, 𝑆). Then 𝜆2/2 = 𝛿(𝐶𝑆). Furthermore, the eigenvalue multiplicity of 𝜆2 is equal to the

number of code words of minimum weight in 𝐶𝑆.

The assumption rank(G𝑆) = 𝑘 is equivalent to Cay(F𝑘
2
, 𝑆) being connected.

Proposition 4.7 shows that the maximum eigenvalue multiplicity of Cayley graphs over F𝑘
2

is

equal to the maximum number of minimum-weight code words in binary linear codes. The code

version of the question has been studied by Ashikhmin, Barg and Vlăduţ [ABV01] answering a

question of Kalai and Linial [KL95].

For a code 𝐶 define 𝐴Δ = {𝑥 ∈ 𝐶 : |𝑥| = Δ(𝐶)} to be the set of non-zero code words of minimum

weight. Define 𝐸𝑞(𝛿) = 𝐻(𝛿) − log 𝑞√
𝑞−1
− log

𝑞

𝑞−1
. For 𝑞 ⩾ 49 , 𝐸𝑞(𝛿) has two roots 0 < 𝛿1(𝑞) < 𝛿2(𝑞) and

is positive for all 𝛿1(𝑞) < 𝛿 < 𝛿2(𝑞). Now we can state the main result of [ABV01].

Theorem 4.8. [ABV01] Fix 𝑠 ∈ N , 𝑞 = 2
2𝑠 such that 𝑞 ⩾ 49. Then for any 𝛿1(𝑞) < 𝛿 < 𝛿2(𝑞) there

exists a sequence 𝑘 → ∞ and a binary linear code 𝐶 of dimension 𝑘 , block length 𝑛 = 𝑞𝑘 , and distance
Δ(𝐶) ⩾ 𝑛𝛿/2 such that

log|𝐴Δ| ⩾ 𝑘𝐸𝑞(𝛿) − 𝑜(𝑘).
That is, Theorem 4.8 yields a code in which the number of minimum-weight codewords is

at least 2
Ω(𝑘)

out of the total number of codewords 2
𝑘
. We can convert this into a Cayley graph

Cay(F𝑘
2
, 𝑆) with mul𝜆2

⩾ 2
Ω(𝑘)

by Proposition 4.7. The degree of the Cayley graph is |𝑆| = 𝑛 = Θ(𝑘)
which is logarithmic in the number of vertices of the graph.
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5 Sparse cuts live in the low eigenspace

In this section, we prove that all sparse cuts of an Abelian Cayley graph are approximately contained

in the low eigenspace with 𝜏 = 𝑂(𝑑 · 𝜙2) thus obtaining Theorem 1.11.

Theorem 5.1. Let 𝐺 = Cay(Γ, 𝑆) with |𝑆| = 𝑑 . Let 0 < 𝜀 ⩽ 1 and 𝜏 = 100𝑑 · 𝜙2/𝜀2
. For all

𝑄 ⊆ [𝑛], |𝑄| ⩽ 𝑛/2 such that 𝜙𝐺(𝑄) ⩽ 2𝜙(𝐺) , we have
Πlow𝜏 1̄𝑄

2

⩾ (1− 𝜀)
1̄𝑄

2

.

The proof extends the combinatorial proof of the Buser inequality in graphs due to Oveis

Gharan and Trevisan [OT21]. Let 𝑄 ⊆ [𝑛] be a sparsest cut in 𝐺 = Cay(Γ, 𝑆). We analyze the

expansion of𝑄 in the graph 𝐺2𝑡
for an appropriate choice of 𝑡 ∈ N. Following the proof of the Buser

inequality [OT21], this quantity can be bounded in terms of the expansion in 𝐺. For completeness,

we include the proof of the following Lemma in Section 5.1.

Lemma 5.2 ([OT21]). 𝜙𝐺2𝑡 (𝑄) ⩽ 2

√
𝑡𝑑 · 𝜙𝐺(𝑄).

On the other hand, by Fact 3.8 the expansion has a spectral representation,

𝜙𝐺2𝑡 (𝐺) =
1𝑇
𝑄

L(𝐺2𝑡)1𝑄
1𝑇
𝑄

1𝑄
. (5.1)

Let 1𝑄 =
∑𝑛
𝑖=1

𝑞𝑖𝑣𝑖(𝐺) be the representation of 1𝑄 in the eigenbasis. The eigenvalues of L(𝐺2𝑡) are

equal to 1− (1−𝜆𝑖(𝐺))2𝑡 . By combining Eq. (5.1) and Lemma 5.2 we obtain,

1

|𝑄|

𝑛∑
𝑖=2

𝑞2

𝑖 (1− (1−𝜆𝑖)2𝑡) ⩽ 2

√
𝑡𝑑 · 𝜙𝐺(𝑄) .

We interpret the left-hand side probabilistically. Let 𝑖 ∼ 𝒮(𝑄) denote the “spectral sample”

distribution on {2, 3, . . . , 𝑛} taking value 𝑖 with probability proportional to 𝑞2

𝑖
i.e. the weight of 1̄𝑄

on the 𝑖th eigenvector. The normalizing factor for 𝒮(𝑄) is ∥1̄𝑄∥2 =
∑𝑛
𝑖=2

𝑞2

𝑖
=
|𝑄|(𝑛−|𝑄|)

𝑛 ⩾ |𝑄|
2

using

|𝑄| ⩽ 𝑛/2. Then we have,

E
𝑖∼𝒮(𝑄)

[1− 𝑒−2𝜆𝑖 𝑡] ⩽ E
𝑖∼𝒮(𝑄)

[1− (1−𝜆𝑖)2𝑡] ⩽ 8

√
𝑡𝑑 · 𝜙(𝐺)

Fixing a threshold 𝜏 ⩾ 0, we upper bound E𝑖∼𝒮(𝑄)[𝑒−2𝜆𝑖 𝑡] ⩽ (1 − 𝑝) + 𝑝𝑒−2𝜏𝑡
where 𝑝 := 1 −

∥Πlow𝜏 1̄𝑄∥2/∥1̄𝑄∥2 is the fraction of mass outside of the low eigenspace. Therefore,

𝑝(1− 𝑒−2𝜏𝑡) ⩽ 8

√
𝑡𝑑 · 𝜙(𝐺) .

Selecting 𝜏 = 100𝜀−2𝑑𝜙2(𝐺) and 𝑡 = 1/𝜏 , we conclude 𝑝 ⩽ 𝜀 i.e. at least 1− 𝜀 fraction of the mass of

1𝑄 is on the low eigenspace. This finishes the proof of Theorem 5.1.

5.1 Buser inequality via random walks [OT21]

Proof of Lemma 5.2. We have assumed that the multiset of generators 𝑆 is symmetric, meaning that 𝑥

and −𝑥 have the same multiplicity in 𝑆. Let {𝑠1, . . . , 𝑠𝑑′} ⊆ 𝑆 be a set of generators ignoring inverses
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i.e. we pair up the inverses and take one each of {𝑥,−𝑥} and we include all generators which are

their own inverse.

We can think of an edge in 𝐺2𝑡
as a walk of length 2𝑡 in 𝐺 which we denote 𝑋0,𝑋1, . . . ,𝑋2𝑡 . Using

the fact that we are on an Abelian Cayley graph, the walk can be expressed as 𝑋2𝑡 = 𝑋0 +
∑𝑑′
𝑖=1
𝐶
(2𝑡)
𝑖
𝑠𝑖

where each 𝐶
(2𝑡)
𝑖
∈ Z is a signed random variable that counts the number of times that generator 𝑠𝑖

is used as a step of the walk, using a minus sign when a step is taken on an inverse element. We

initialize the walk at a uniformly random vertex.

The random variable 𝐶
(𝑡)
𝑖

follows a simpler random walk on Z. It changes by either {−1, 0,+1}
at each step, the probability of transitioning to ±1 is 1/𝑑, and due to the symmetry condition of 𝑆 it

has mean zero. In particular, this walk exhibits a lot of cancellations and we expect it to have an

approximately Gaussian density around 0.

Because of the cancellations, we can take a shorter walk to reach 𝑋2𝑡 which only uses |𝐶(2𝑡)
𝑖
| of

the edges labeled 𝑠𝑖 , say, the first |𝐶(2𝑡)
𝑖
| steps in that direction. Due to the random initialization,

each of the steps of the random walk 𝑋2𝑡 in direction 𝑠𝑖 is marginally a uniformly random edge of

the graph in that direction. Let 𝜕𝑖𝑄 = {(𝑥, 𝑥 ± 𝑠𝑖) ∈ 𝐸(𝐺) : 𝑥 ∈ 𝑄, 𝑥 ± 𝑠𝑖 ∉ 𝑄} . By taking a union

bound over each of the edges in the shorter walk, we have:

P(𝑋0 ∈ 𝑄 ∧𝑋2𝑡 ∉ 𝑄) ⩽
𝑑′∑
𝑖=1

E[|𝐶(2𝑡)
𝑖
|] · |𝜕𝑖𝑄|

𝑛

⩽
𝑑′∑
𝑖=1

√
E[(𝐶(2𝑡)

𝑖
)2] · |𝜕𝑖𝑄|

𝑛
.

Each 𝐶
(2𝑡)
𝑖

is the sum of 2𝑡 independent, mean-zero random variables that take values in {−1, 0,+1}
and that are 0 with probability 1− 2/𝑑. We compute E[(𝐶(2𝑡)

𝑖
)2] = 4𝑡/𝑑.

8
Therefore,

P(𝑋0 ∈ 𝑄 ∧𝑋2𝑡 ∉ 𝑄) ⩽
𝑑′∑
𝑖=1

√
4𝑡

𝑑
· |𝜕𝑖𝑄|

𝑛

=

√
4𝑡

𝑑
· |𝜕𝑄|
𝑛

=
|𝑄|
𝑛
· 2
√
𝑡𝑑 · 𝜙(𝑄) .

Finally, we have P(𝑋0 ∈ 𝑄 ∧𝑋2𝑡 ∉ 𝑄) = |𝑄|𝑛 · 𝜙𝐺2𝑡 (𝑄). Plugging this in completes the claim. □

6 Algorithm for sparse cuts near a given subspace

We give an algorithm that computes an approximate sparsest cut lying near a given low-dimensional

subspace, or equivalently computes the approximate sparsest hyperplane cut of a given low-

dimensional embedding. Theorem 1.10 and Theorem 1.5 will then follow as immediate consequences.

For a subspace 𝑆 ⊆ R𝑛
, recall that we define 𝐶𝜀(𝑆) := {𝑥 ∈ R𝑛 : ∥𝑥∥ = 1, ∥Π𝑆𝑥∥2 ⩾ 1− 𝜀} to be

the unit vectors near 𝑆.

8
For generators which are their own inverse, we define the walk on 𝐶

(𝑡)
𝑖

to increment either ±1 at random. The

probability of 𝐶
(𝑡)
𝑖

transitioning to ±1 is
1

2𝑑
. We compute E[(𝐶(2𝑡)

𝑖
)2] = 2𝑡/𝑑 for this case.
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Theorem 6.1. Let 𝜀 = 1/20 and 𝐺 be an 𝑛-vertex graph. There is an algorithm that, given 𝐺 and a subspace
𝑆 ⊆ R𝑛 , finds a set �̂� ⊆ [𝑛] satisfying

𝜓𝐺(�̂�) ⩽ (1+𝑂(
√
𝜀)) · min

𝑄⊆[𝑛]:
1̄𝑄/∥1̄𝑄∥∈𝐶𝜀(𝑆)

𝜓𝐺(𝑄) .

Furthermore, the algorithm runs in time 𝑛𝑂(1) · exp{𝑂(dim(𝑆))} .

The algorithm behind Theorem 6.1 is as follows.

Algorithm 6.2.
Input: graph 𝐺 , 0 ⩽ 𝜀 ⩽ 1 , subspace 𝑆 ⊆ R𝑛

specified by a basis

Output: Set �̂� ⊆ [𝑛] .

(1) Enumerate a

√
𝜀-net 𝑁 for the unit vectors in 𝑆 of size 𝑂(1/

√
𝜀)dim(𝑆)

.

(2) For each enumerated vector 𝑣 ∈ 𝑁 and each possible threshold 𝜏 ∈ R, run the ARV-with-

advice algorithm (Lemma 6.3) on the threshold cut {𝑖 ∈ [𝑛] : 𝑣𝑖 ⩾ 𝜏}. There are at most 𝑛

distinct threshold cuts.

(3) Output the minimum sparsity cut seen among the candidates from the previous step.

The main second step is an extension of the ARV algorithm [ARV09] which finds a cut with low

sparsity when given a set of vertices which is correlated with a sparse cut.

Lemma 6.3 (Sparsest cut with advice). Let 𝐺 be an 𝑛-vertex graph, let 0 ⩽ 𝜀 ⩽ 1/20 and let
𝑄∗ ⊆ [𝑛], |𝑄∗| ⩽ 𝑛/2. There exists a polynomial time algorithm that, given 𝐺 and 𝑄 ⊆ [𝑛] such that
|𝑄△𝑄∗| ⩽ 𝜀|𝑄| , returns �̂� ⊆ [𝑛] with 𝜓(�̂�) ⩽ (1+𝑂(

√
𝜀)) ·𝜓(𝑄∗) .

We defer the proof to the next section, finishing here the analysis of the algorithm and the proof

of Theorem 6.1. We use the following Lemma.

Lemma 6.4. Let 0 ⩽ 𝜀 < 1/8, 𝑣 ∈ R𝑛
, ∥𝑣∥ = 1 and 𝑄∗ ⊆ [𝑛], |𝑄∗| ⩽ 𝑛/2. If

1̄𝑄∗/∥1̄𝑄∗∥ − 𝑣
2

⩽ 𝜀 then

∥1𝑄 − 1𝑄∗∥2 = |𝑄△𝑄∗| ⩽ 8𝜀|𝑄|/(1− 8𝜀) where 𝑄 =

{
𝑖 ∈ [𝑛] : 𝑣𝑖 ⩾ 1

2

√
2|𝑄∗|

}
.

Proof. The entries of 1̄𝑄∗/∥1̄𝑄∗∥ are either

√
𝑛−|𝑄∗|
𝑛|𝑄∗| or −

√
|𝑄∗|

𝑛(𝑛−|𝑄∗|) . Since |𝑄∗| ⩽ 𝑛/2, these are at least

1√
2|𝑄∗|

and at most 0 respectively. Each disagreement between 𝑄 and 𝑄∗ therefore leads to an entry

of squared magnitude at least
1

8|𝑄∗| in the vector 1̄𝑄∗/∥1̄𝑄∗∥ − 𝑣, hence

𝜀 ⩾
1̄𝑄∗/∥1̄𝑄∗∥ − 𝑣

2

⩾ |𝑄△𝑄∗| · 1

8|𝑄∗| .

Rearranging,

|𝑄△𝑄∗| ⩽ 8𝜀|𝑄∗| ⩽ 8𝜀(|𝑄| + |𝑄△𝑄∗|)
=⇒ |𝑄△𝑄∗| ⩽ 8𝜀|𝑄|/(1− 8𝜀) .

□
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Proof of Theorem 6.1. Let 𝜀 be a small enough constant and let 𝑄∗ ⊆ [𝑛] be the cut with minimum

sparsity such that 1̄𝑄∗/∥1̄𝑄∗∥ ∈ 𝐶𝜀(𝑆) . We may assume |𝑄∗| ⩽ 𝑛/2 since 𝑄∗ and 𝑉 \𝑄∗ are treated

identically. Let 𝑣∗ = Π𝑆1̄𝑄∗/∥Π𝑆1̄𝑄∗∥ be the projection of 1̄𝑄∗ to 𝑆 rescaled into a unit vector. The

subspace enumeration gives a unit vector 𝑣 ∈ 𝑆 such that

∥1̄𝑄∗/∥1̄𝑄∗∥ − 𝑣∥ ⩽
1̄𝑄∗/∥1̄𝑄∗∥ − 𝑣∗

︸               ︷︷               ︸
⩽𝑂(
√
𝜀) by defn. of 𝐶𝜀(𝑆)

+ ∥𝑣∗ − 𝑣∥︸   ︷︷   ︸
⩽
√
𝜀 by net

⩽ 𝑂(
√
𝜀) .

By Lemma 6.4, there is a threshold cut 𝑄 = {𝑖 ∈ [𝑛] : 𝑣𝑖 ⩾ 𝜏} such that |𝑄△𝑄∗| ⩽ 𝑂(𝜀) · |𝑄|. We

may then use the set 𝑄 as the advice in Lemma 6.3 to obtain the desired cut. The algorithm in

Lemma 6.3 takes time 𝑛𝑂(1) and there are at most 2
𝑂(dim(𝑆))

vectors in 𝑁 , so the result follows. □

6.1 Sparsest cut with advice

In this section we prove Lemma 6.3. We phrase the algorithm in terms of the sum-of-squares

algorithm, with necessary background in Appendix D, although the reader who is more familiar

with the ARV semidefinite program can equally well convert the ideas into that viewpoint.

Proof of Lemma 6.3. Let 0 ⩽ 𝜀 ⩽ 1, let 𝐺 be a graph over [𝑛] , and let𝑄∗,𝑄 ⊆ [𝑛] such that |𝑄∗| ⩽ 𝑛/2
and |𝑄△𝑄∗| ⩽ 𝜀|𝑄|.

We may assume to know 𝜓 = 𝜓(𝑄∗) by brute forcing over this parameter in polynomial time.

Consider the following system of polynomial inequalities in indeterminates xx1, . . . , xx𝑛 ,

∑
𝑖 𝑗∈𝐸(𝐺)

(xx𝑖 − xx𝑗)2 ⩽ 𝜓 ·
∑
𝑖∈[𝑛]

xx𝑖 · ©«𝑛 −
∑
𝑖∈[𝑛]

xx𝑖
ª®¬

∀𝑖 ∈ [𝑛] xx2

𝑖 = xx𝑖∑
𝑖∈𝑄
(1− xx𝑖)2 +

∑
𝑖∉𝑄

xx2

𝑖 ⩽ 𝜀|𝑄|


= : (𝒫𝜓,𝜀(𝐺,𝑄))

The first two lines are the canonical integer programming formulation of sparsest cut. The last

constraint establishes that xx is within 𝜀|𝑄|Hamming distance of 𝑄. The solution xx = 1𝑄∗ satisfies

the system 𝒫𝜓,𝜀(𝐺,𝑄) by assumption and so the system is feasible.

The algorithm starts by solving the degree-4 sum-of-squares relaxation of 𝒫𝜓,𝜀(𝐺,𝑄). We argue

that any degree-4 pseudo-distribution 𝜇 can be rounded into a sparse cut. We round the output

pseudo-distribution 𝜇 into the following distribution 𝜇′ : pick 𝑢
𝑢.𝑎.𝑟.∼ [𝑛] and 𝑡

𝑢.𝑎.𝑟.∼ [0, 1] and let 𝐵

be the ball 𝐵 := {𝑖 ∈ [𝑛] : Ẽ𝜇(xx𝑢 − xx𝑖)2 ⩽ 𝑡} .

In the remainder of the proof, we will show that

E𝜇′ |𝐸𝐺(𝐵,𝑉 \ 𝐵)|
E𝜇′ |𝐵|(𝑛 − |𝐵|)

⩽ (1+𝑂(
√
𝜀)) ·

Ẽ𝜇
∑
𝑖 𝑗∈𝐸(𝐺)(xx𝑖 − xx𝑗)2

Ẽ𝜇(
∑
𝑖∈[𝑛] xx𝑖) · (𝑛 −

∑
𝑖∈[𝑛] xx𝑖)

.

The right-hand side is 1+𝑂(
√
𝜀) times the SDP value, which is at most𝜓(𝑄∗). The lemma then follows

from the fact that for non-negative random variables 𝑋,𝑌, P
(
𝑋
𝑌 ⩽ E𝑋

E𝑌

)
> 0 assuming P(𝑌 > 0) > 0

(the case𝑌 ≡ 0 is trivial). Thus there exist 𝑢, 𝑡 such that the ball 𝐵 satisfies 𝜓(𝐵) ⩽ (1+𝑂(
√
𝜀)) ·𝜓(𝑄∗)

which will complete the lemma.
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Define the notation 𝑑(𝑖, 𝑗) = Ẽ𝜇(xx𝑖 − xx𝑗)2 . A degree-4 pseudo-expectation operator satisfies the

ℓ 2

2
triangle inequality (see Appendix D for a proof): for all 𝑖, 𝑗, 𝑘 ∈ [𝑛],

𝑑(𝑖, 𝑗) ⩽ 𝑑(𝑖, 𝑘) + 𝑑(𝑘, 𝑗)
Ẽ𝜇(xx𝑖 − xx𝑗)2 ⩽ Ẽ𝜇(xx𝑖 − xx𝑘)2 + Ẽ𝜇(xx𝑘 − xx𝑗)2 .

The same holds if any of the variables are replaced by constants 0 or 1.

First we upper bound the numerator. Observe that every edge (𝑖, 𝑗) is a cut edge with probability

P
(
𝑑(𝑖, 𝑢) ⩽ 𝑡 ⩽ 𝑑(𝑗, 𝑢)

)
= |𝑑(𝑖, 𝑢) − 𝑑(𝑗, 𝑢)|

∗
⩽ 𝑑(𝑖, 𝑗) (∗ : triangle inequality) .

Therefore the expected cut size satisfies

E𝜇′|𝐸𝐺(𝐵,𝑉 \ 𝐵)| ⩽ Ẽ𝜇

∑
𝑖 𝑗∈𝐸(𝐺)

(xx𝑖 − xx𝑗)2

Next we lower bound the denominator E𝜇′ |𝐵|(𝑛 − |𝐵|) . We have by the final constraint that∑
𝑖∈[𝑛]

Ẽ𝜇(1𝑄(𝑖) − xx𝑖)2 ⩽ 𝜀|𝑄| . (6.1)

This implies that for at least 1−
√
𝜀 fraction of 𝑖 ∈ 𝑄 and at least 1−

√
𝜀 · |𝑄||𝑉\𝑄| fraction of 𝑖 ∈ 𝑉 \𝑄,

Ẽ𝜇(1𝑄(𝑖) − xx𝑖)2 ⩽
√
𝜀 . (6.2)

We say that 𝑖 ∈ [𝑛] is “good” if Eq. (6.2) holds. Note that the good fraction of 𝑉 \𝑄 is also at least

1−𝑂(
√
𝜀) since |𝑄| ⩽ (1+𝑂(𝜀)) · |𝑄∗| ⩽ (1+𝑂(𝜀)) · 𝑛/2.

By the triangle inequality, all good pairs 𝑖, 𝑗 ∈ 𝑄 or 𝑖, 𝑗 ∈ 𝑉 \𝑄 have 𝑑(𝑖, 𝑗) ⩽ 2

√
𝜀 while all

good pairs 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑉 \𝑄 have 𝑑(𝑖, 𝑗) ⩾ 1− 2

√
𝜀. If the randomized ball rounding picks a good

𝑢 ∈ [𝑛], then all good points will be separated if additionally 𝑡 ∈ [2
√
𝜀, 1 − 2

√
𝜀]. Putting these

things together,

E
𝜇′
|𝐵|(𝑛 − |𝐵|) ⩾ P(𝑢 good) ·P

(
𝑡 ∈ [2

√
𝜀, 1− 2

√
𝜀]

)
· (# of good pairs)

⩾ (1−𝑂(
√
𝜀)) · (1− 4

√
𝜀) · (1−𝑂(

√
𝜀))2 · |𝑄|(𝑛 − |𝑄|)

= (1−𝑂(
√
𝜀)) · |𝑄|(𝑛 − |𝑄|) .

We also have,

Ẽ𝜇

(∑
𝑖∈[𝑛] xx𝑖

) (
𝑛 −∑

𝑖∈[𝑛] xx𝑖
)

=

∑
𝑖,𝑗∈[𝑛]

Ẽ𝜇(xx𝑖 − xx𝑗)2 (Boolean constraint of 𝒫𝜓,𝜀(𝐺,𝑄))

⩽
∑
𝑖,𝑗∈[𝑛]

Ẽ𝜇(1𝑄(𝑖) − xx𝑖)2 +
∑
𝑖,𝑗∈[𝑛]
(1𝑄(𝑖) − 1𝑄(𝑗))2 +

∑
𝑖,𝑗∈[𝑛]

Ẽ𝜇(1𝑄(𝑗) − xx𝑗)2 (triangle inequality)

= 2𝑛 ·
∑
𝑖∈[𝑛]

Ẽ𝜇(1𝑄(𝑖) − xx𝑖)2 + |𝑄|(𝑛 − |𝑄|)

⩽ 2𝑛 · 𝜀|𝑄| + |𝑄|(𝑛 − |𝑄|) ⩽ (1+𝑂(𝜀)) · |𝑄|(𝑛 − |𝑄|) . (Eq. (6.1), |𝑄| ⩽ 𝑛/2+𝑂(𝜀𝑛))
Putting this together, we conclude E𝜇′ |𝐵|(𝑛 − |𝐵|) ⩾ (1−𝑂(

√
𝜀)) · Ẽ𝜇(

∑
𝑖∈[𝑛] xx𝑖)(𝑛 −

∑
𝑖∈[𝑛] xx𝑖) which

completes the analysis of the denominator. □
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A Low threshold rank implies expander decomposition

Proposition A.1. Let 𝐺 be a graph and 2 ⩾ 𝜏 ⩾ 0. If mul𝜏(𝐺) = 𝑟 , then 𝑉(𝐺) has a partition into
𝐻1, . . . ,𝐻𝑟′ with 𝑟′ ⩽ 𝑟 + 1 such that:

(i) 𝜙𝐺(𝐻𝑖) ⩽ 𝜏 for all 𝑖 = 1, . . . , 𝑟′ except possibly 𝑖 = 𝑟′

(ii) 𝜙𝐺(𝐾) > 𝜏 for all 𝑖 = 1, . . . , 𝑟′ and subgraphs 𝐾 ⊂ 𝐻𝑖 .

Proof. Maintain a set 𝑉 which is initially equal to 𝑉(𝐺) . Select the smallest subgraph 𝐻 ⊆ 𝑉 such

that 𝜙𝐺(𝐻) ⩽ 𝜏 , if any. We output 𝐻 as a piece of the partition, then remove it and recursively

proceed on 𝑉 ← 𝑉 \𝐻. We take the final piece of the partition to be 𝑉 once the process terminates.

It is clear that this generates a partition of 𝑉(𝐺) , and that conditions (i) and (ii) are satisfied. It

remains to show 𝑟′ ⩽ 𝑟 + 1.

Each of the subgraphs 𝐻𝑖 except for the last one has expansion at most 𝜏 . Therefore, by Fact 3.8,

we have a collection of 𝑟′ − 1 disjointly-supported (thus orthogonal) vectors D1/21𝐻𝑖 whose Rayleigh

quotients are at most 𝜏. This implies 𝜆𝑟′−1(𝐺) ⩽ 𝜏 , as can be proven using the variational formula

for the eigenvalues:

𝜆𝑘(𝐺) = min

𝑣1,...,𝑣𝑘∈R𝑛 :
𝑣𝑖⊥𝑣 𝑗

max

𝑣∈span(𝑣1,...,𝑣𝑘 )

𝑣𝑇L(𝐺)𝑣
𝑣𝑇𝑣

.

We conclude 𝑟′ − 1 ⩽ 𝑟. □

B Cut dimension of the cycle graph

The fact that the cut dimension can be smaller than the 𝜙-threshold-rank is unexpected because the

conductance of a cut equals its “average” eigenvalue: for all 𝑄 ⊆ [𝑛] , using Fact 3.8 for a regular

graph 𝐺,

𝜙𝐺(𝑄) =
1𝑇
𝑄

L1𝑄
1𝑇
𝑄

1𝑄
= E
𝑖∼𝒮(𝑄)

[𝜆𝑖] (B.1)

where 𝒮(𝑄) is the distribution on [𝑛] proportional to ⟨1𝑄 , 𝑣𝑖⟩2 and 𝑣𝑖 is an eigenbasis for 𝐺.

Eq. (B.1) is at least the expansion parameter 𝜙, implying that every Boolean vector 1𝑄 must have

some component in the eigenspaces to at least 𝜙. In other words, CD0(𝐺) ⩾ mul𝜙(𝐺) , and in order

to exactly recover a cut indicator, it is necessary to explore the entire eigenspace up to at least 𝜙.

Conversely, Markov’s inequality on Eq. (B.1) shows that every cut satisfying 𝜙𝐺(𝑄) ⩽ 2𝜙(𝐺)must

have all but 𝜀 fraction of its weight on eigenvalues up to 2𝜀−1𝜙. This implies CD𝜀 ⩽ mul𝑂(𝜀−1𝜙)(𝐺).
Surprisingly, it may still be that only a tiny fraction of 1𝑄 lies in the eigenspaces above 𝜙, i.e.,

CD𝜀(𝐺) ≪ mul𝜙(𝐺).
For example, the cycle graph 𝐺 = Cay(Z𝑛 , {±1}) has 𝜙 = Θ( 1𝑛 ) with the sparsest cuts being any

of the 𝑛 possible bisections of the cycle into two halves. From Fact 3.11, an eigenbasis for the cycle

consists of the Fourier characters,

𝑣𝛼 : Z𝑛 → C ,
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𝑣𝛼(𝑥) = exp(2𝜋𝑖 · 𝛼𝑥/𝑛)

for 𝛼 ∈ Z𝑛 with normalized Laplacian eigenvalue𝜆𝛼 = 1− cos(2𝜋𝛼/𝑛). Estimating 1− cos(2𝜋𝛼/𝑛) =
Θ(𝛼2/𝑛2) for 𝛼 = 𝑜(𝑛)we obtain mul𝜙 = Θ(

√
𝑛).

In contrast we compute that CD𝜀 = Θ(1) for the cycle graph, which may be predicted since

the eigenvector to 𝜆2 already sign-indicates a sparsest cut. For simplicity, assume 4|𝑛 and let

𝑄∗ = {− 𝑛
4
,− 𝑛

4
+ 1, . . . , 𝑛

4
− 1} be an optimal cut. Let the eigenbasis representation of 𝑄∗ be 1𝑄∗ =∑

𝛼∈Z𝑛
𝑞𝛼𝑣𝛼. We compute, ∑

𝑥∈𝑄∗
𝑣𝛼(𝑥) =

{
Θ( 𝑛𝛼 ) 𝛼 odd

0 𝛼 even

=⇒ 𝑞𝛼 =

∑
𝑥∈𝑄∗ 𝑣𝛼(𝑥)∑

𝑥∈Z𝑛
|𝑣𝛼(𝑥)|2

=

{
Θ( 1𝛼 ) 𝛼 odd

0 𝛼 even

Therefore, the squared weight on eigenspace 𝛼 decreases at the rate Θ( 1

𝛼2
). Summing this up, the

total squared weight beyond the 1/𝜀-th eigenvalue is Θ(𝜀). At the same time, in the equation,

𝜙(𝑄∗) = E
𝛼∼𝒮(𝑄∗)

[𝜆𝛼]

=

∑
𝛼∈Z𝑛

Θ( 1

𝛼2
) ·Θ(𝛼2/𝑛2)

= Θ( 1𝑛 )

each Fourier level is contributing the same amount Θ( 1

𝑛2
) towards the expansion of 𝑄∗.

C Sparsest cut in Z𝑛
𝑝

In this section, we show that there is a simple polynomial time algorithm that computes a

𝑂(𝑝)-approximation for sparsest cut on undirected Cayley graphs over Z𝑛
𝑝 , where 𝑝 is prime.

Proposition C.1. There exists a polynomial time algorithm that computes an 𝑂(𝑝)-approximation on
undirected Cayley graphs over Z𝑛

𝑝 .

The idea is given 𝐺 = Cay(Z𝑛
𝑝 , 𝑆), we define a related graph 𝐺′ = Cay(Z𝑛

𝑝 , 𝑆′) such that

1. 𝜙(𝐺′) is a 𝑂(𝑝)-approximation of 𝜙(𝐺), and

2. 𝜆2(𝐺′) is a 𝑂(1)-approximation of 𝜙(𝐺′).

Combining both (1) and (2) implies 𝜆2(𝐺′) is an𝑂(𝑝)-approximation of 𝜙(𝐺). Hence, the polynomial

time 𝑂(𝑝)-approximation algorithm is computing 𝜆2(𝐺′).
Let 𝐺 = Cay(Z𝑛

𝑝 , 𝑆). Consider 𝐺′ = Cay(Z𝑛
𝑝 , 𝑆′), where 𝑆′ is the multiset of size

𝑝−1

2
|𝑆| containing

∪𝑘∈[(𝑝−1)/2]𝑘𝑆, where 𝑘𝑆 = {𝑘𝑠 : 𝑠 ∈ 𝑆}. The set 𝑆′ is obtained from 𝑆 by taking all non-zero multiples

of 𝑆 up to (𝑝 − 1)/2. By symmetry of 𝑆, the multiset 𝑆′ contains all non-zero multiples of each 𝑥 ∈ 𝑆.

For each 𝑘 ≠ 0, the graph 𝐺𝑘 = Cay(Z𝑛
𝑝 , 𝑘𝑆) is isomorphic to Cay(Z𝑛

𝑝 , 𝑆). In this section use the fact

that the eigenvectors of Cayley graphs over Z𝑛
𝑝 are given by 𝜒𝑔(𝑥) = 𝑒2𝜋𝑖⟨𝑥,𝑔⟩/𝑝

, where 𝑔 ∈ Γ.

The lemma below shows that 𝜙(𝐺) and 𝜙(𝐺′) differ by at most a factor of (𝑝 + 1)/4.
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Lemma C.2. The graphs 𝐺 and 𝐺′ satisfy that,

𝜙(𝐺) ⩽ 𝜙(𝐺′) ⩽ 𝑝 + 1

4

𝜙(𝐺).

Proof. We begin with the lower bound 𝜙(𝐺) ⩽ 𝜙(𝐺′). Let 𝑄 ⊆ Z𝑛
𝑝 such that |𝑄| ⩽ 𝑝𝑛/2. Observe

that 𝐸𝐺′(𝑄, �̄�) = ∑
𝑘∈[(𝑝−1)/2] 𝐸𝐺𝑘 (𝑄, �̄�). Since 𝐺𝑘 is isomorphic to 𝐺 for all 𝑘 ∈ [(𝑝 − 1)/2], we have

𝐸𝐺𝑘 (𝑄, �̄�) ⩾ 𝜙(𝐺)|𝑆||𝑄|. This implies

𝜙𝐺′(𝑄) =
𝐸𝐺′(𝑄, �̄�)
|𝑆′||𝑄|

⩾

∑
𝑘∈[(𝑝−1)/2] 𝐸𝐺𝑘 (𝑄, �̄�)

|𝑆′||𝑄|

⩾
𝑝−1

2
|𝑆||𝑄|𝜙(𝐺)
|𝑆′||𝑄|

= 𝜙(𝐺).

Hence, 𝜙(𝐺′) ⩾ 𝜙(𝐺).
Now, we prove the upper bound 𝜙(𝐺′) ⩽ 𝑝+1

4
𝜙(𝐺). Observe that we can write the num-

ber of edges cut by 𝑄 as 𝐸𝐺(𝑄, �̄�) = 1

2

∑
𝑠∈𝑆

∑
𝑥∈Z𝑛

𝑝
(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑠))2 and 𝐸𝐺′(𝑄, �̄�) =

1

2

∑
𝑘∈[(𝑝−1)/2]

∑
𝑠∈𝑆

∑
𝑥∈Z𝑛

𝑝
(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑘𝑠))2. The terms (1𝑄(𝑥) − 1𝑄(𝑥 + 𝑘𝑠))2 satisfy a “triangle

inequality”

(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑘𝑠))2 ⩽
𝑘∑
𝑖=1

(1𝑄(𝑥 + (𝑖 − 1)𝑠) − 1𝑄(𝑥 + 𝑖𝑠))2.

Note that for each fixed 𝑖 ∈ [𝑘], ∑𝑥∈Z𝑛
𝑝
(1𝑄(𝑥 + (𝑖 − 1)𝑠) − 1𝑄(𝑥 + 𝑖𝑠))2 =

∑
𝑥∈Z𝑛

𝑝
(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑠))2.

This implies, ∑
𝑥∈Z𝑛

𝑝

(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑘𝑠))2 ⩽
∑
𝑥∈Z𝑛

𝑝

𝑘∑
𝑖=1

(1𝑄(𝑥 + (𝑖 − 1)𝑠) − 1𝑄(𝑥 + 𝑖𝑠))2

⩽ 𝑘
∑
𝑥

(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑠))2.

Using this we obtain the following bound on 𝐸𝐺′(𝑄, �̄�) in terms of 𝐸𝐺(𝑄, �̄�)

𝐸𝐺′(𝑄, �̄�) = 1

2

∑
𝑘∈[(𝑝−1)/2]

∑
𝑠∈𝑆

∑
𝑥∈Z

𝑝
𝑛

(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑘𝑠))2

⩽
1

2

∑
𝑘∈[(𝑝−1)/2]

∑
𝑠∈𝑆

∑
𝑥∈Z𝑛

𝑝

(1𝑄(𝑥) − 1𝑄(𝑥 + 𝑠))2

=
(𝑝 − 1)(𝑝 + 1)

8

𝐸𝐺(𝑄, �̄�).

Dividing by |𝑆′||𝑄|, we obtain 𝜙𝐺′(𝑄) ⩽ 𝑝+1

4
𝜙(𝑄). Thus, 𝜙(𝐺′) ⩽ 𝑝+1

4
𝜙(𝐺), as desired. □

To conclude the analysis, we show that 𝜆2(𝐺′) and 𝜙(𝐺′) differ by a factor of at most 1/2. Our

proof makes use of a well-known lemma which can be found in [HLW06].
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Lemma C.3. [HLW06] Let 𝐺 = (𝑉 ,𝐸) be a graph, L the normalized Laplacian of 𝐺, and 𝑓 an eigenvector
corresponding to 𝜆2(𝐺). Define 𝑓+ by 𝑓+(𝑥) = max{ 𝑓 (𝑥), 0} and 𝑓− by 𝑓−(𝑥) = min{ 𝑓 (𝑥), 0}. Then 𝑓+, 𝑓−
are disjointly supported and satisfy

𝛾𝑇−L𝐺′𝛾−
𝛾𝑇−𝛾−

⩽ 𝜆2(𝐺),
𝛾𝑇+L𝐺′𝛾+
𝛾𝑇+𝛾+

⩽ 𝜆2(𝐺).

Lemma C.4. The graph 𝐺′ satisfies

𝜆2(𝐺′)
2

⩽ 𝜙(𝐺′) ⩽ 𝜆2(𝐺′).

Proof. The first inequality is a direct application of Cheeger’s inequality. It remains to prove the

second inequality 𝜙(𝐺′) ⩽ 𝜆(𝐺′). Let 𝑘 ≠ 0 and 𝑔 ∈ Γ and 𝜒𝑔 be the corresponding character

(see Fact 3.11). We claim that if 𝜒𝑔 is an eigenvector corresponding to 𝜆2(𝐺′), then so is 𝜒𝑘𝑔 . By

definition, for every 𝑠 ∈ 𝑆′ the element 𝑘𝑠 ∈ 𝑆′ occurs with the same multiplicity. This implies∑
𝑠∈𝑆′ 𝜒𝑔(𝑠) =

∑
𝑠∈𝑆′ 𝜒𝑘𝑔(𝑠). Hence, 𝜒𝑘𝑔 is also an eigenvector corresponding to 𝜆2(𝐺′).

Consider the symmetrized eigenvector 𝛾 =
∑
𝑘∈[𝑝−1] 𝜒𝑘𝑔(𝑠) corresponding to 𝜆2(𝐺′). One can

see that for each 𝑥 ∈ Γ, the vector 𝛾 satisfies

𝛾(𝑥) =
{
𝑝 − 1 if ⟨𝑔, 𝑥⟩ = 0

−1 otherwise.

Define 𝛾+ by 𝛾+(𝑥) = max{𝛾(𝑥), 0}. Observe that 𝛾+ = (𝑝−1)1𝑄 , where𝑄 = {𝑥 ∈ Z
𝑝
𝑛 : ⟨𝑔, 𝑥⟩ = 0}

is the subspace orthogonal to 𝑔. Applying Lemma C.3, we obtain

𝜙(𝐺′) ⩽ 𝜙𝐺′(𝑄) =
1𝑇
𝑄

L𝐺′1𝑄
1𝑇
𝑄

1𝑄
=

𝛾𝑇+L𝐺′𝛾+
𝛾𝑇+𝛾+

= 𝜆2(𝐺′).

□

Combining both lemmas gives us proves Proposition C.1.

Proof of Proposition C.1. Let 𝐺 = Cay(Z𝑛
𝑝 , 𝑆) and 𝐺′ = Cay(Z𝑛

𝑝 , 𝑆′), where 𝑆′ is the multiset of size

𝑝−1

2
|𝑆| containing ∪𝑘∈[(𝑝−1)/2]𝑘𝑆, where 𝑘𝑆 = {𝑘𝑠 : 𝑠 ∈ 𝑆}. One can see that the graph 𝐺′ and

the eigenvalue 𝜆2(𝐺′) can be computed in time polynomial in |Z𝑛
𝑝 |. Combining Lemma C.2 and

Lemma C.4 gives us

𝜙(𝐺) ⩽ 𝜆2(𝐺′) ⩽
𝑝 + 1

2

𝜙(𝐺).

Hence, 𝜆2(𝐺′) provides a 𝑂(𝑝)-approximation to 𝜙(𝐺). □

D Sum-of-squares background

We present here necessary background about the sum-of-squares framework, adapted from [KS17].

See [FKP
+
19] for proofs and more details.

Let xx = (xx1, xx2, . . . , xx𝑛) be a tuple of 𝑛 indeterminates and let R[xx] be the set of polynomials

with real coefficients and indeterminates xx1, . . . , xx𝑛 . In a polynomial feasibility problem, we are given a
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system of polynomial inequalities𝒜 = { 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0}, and we would like to know if there

exists a point 𝑥 ∈ R𝑛
satisfying 𝑓𝑖(𝑥) ⩾ 0 for all 𝑖 ∈ [𝑚]. This task is easily seen to be NP-hard.

Given a polynomial system𝒜, the sum-of-squares (sos) algorithm computes a pseudo-distribution
of solutions to𝒜 if one exists. Pseudo-distributions are generalizations of probability distributions,

therefore the sos algorithm solves a relaxed version of the feasibility problem. The search for a

pseudo-distribution can be formulated as a semidefinite program (SDP).

There is strong duality between pseudo-distributions and sum-of-squares proofs: the sos algorithm

will either find a pseudo-distribution satisfying𝒜, or a refutation of𝒜 inside the sum-of-squares

proof system. When using sos for algorithm design as we do here, we work in the former case and

our goal is to design a rounding algorithm that transforms a pseudo-distribution into an actual

point 𝑥 that satisfies or nearly satisfies𝒜.

The side of the sum-of-squares algorithm which computes a pseudo-distribution is summarized

into the following theorem (we will not need the side that computes a sum-of-squares refutation).

The full definitions of these objects will be presented momentarily.

Theorem D.1. Fix a parameter ℓ ∈ N. There exists an (𝑛 +𝑚)𝑂(ℓ )-time algorithm that, given an explicitly
bounded and satisfiable polynomial system𝒜 = { 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} in 𝑛 variables with bit complexity
(𝑛 +𝑚)𝑂(1), outputs a degree-ℓ pseudo-distribution that satisfies𝒜 approximately.

Pseudo-distributions. We can represent a discrete (i.e., finitely supported) probability distribution

over R𝑛
by its probability mass function 𝜇 : R𝑛 → R such that 𝜇 ⩾ 0 and

∑
𝑥∈supp(𝜇) 𝜇(𝑥) = 1. A

pseudo-distribution relaxes the constraint 𝜇 ⩾ 0 and only requires that 𝜇 passes certain low-degree

non-negativity tests.

Concretely, a degree-ℓ pseudo-distribution is a finitely-supported function 𝜇 : R𝑛 → R such that∑
𝑥∈supp(𝜇) 𝜇(𝑥) = 1 and

∑
𝑥∈supp(𝜇) 𝜇(𝑥) 𝑓 (𝑥)2 ⩾ 0 for every polynomial 𝑓 of degree at most ℓ/2. A

straightforward polynomial interpolation argument shows that every degree-∞ pseudo-distribution

satisfies 𝜇 ⩾ 0 and is thus an actual probability distribution.

A pseudo-distribution 𝜇 can be equivalently represented through its pseudo-expectation operator
Ẽ𝜇. For a function 𝑓 on R𝑛

we define the pseudo-expectation Ẽ𝜇 𝑓 (xx) as

Ẽ𝜇 𝑓 (xx) =
∑

𝑥∈supp(𝜇)
𝜇(𝑥) 𝑓 (𝑥) .

We are interested in pseudo-distributions which satisfy a given system of polynomials𝒜.

Definition D.2 (Satisfying constraints). Let 𝜇 be a degree-ℓ pseudo-distribution over R𝑛
. Let𝒜 =

{ 𝑓1 ⩾ 0, 𝑓2 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} be a system of polynomial inequalities. We say that 𝜇 satisfies𝒜 at level 𝑟,
denoted 𝜇 𝑟 𝒜, if for every 𝑆 ⊆ [𝑚] and every polynomial ℎ with 2 deg ℎ +∑

𝑖∈𝑆 max{deg 𝑓𝑖 , 𝑟} ⩽ ℓ ,

Ẽ𝜇ℎ
2 ·

∏
𝑖∈𝑆

𝑓𝑖 ⩾ 0 .

We say 𝜇 satisfies𝒜 and write 𝜇 𝒜 if the case 𝑟 = 0 holds.

We remark that 𝜇 {1 ⩾ 0} is equivalent to 𝜇 being a valid pseudo-distribution, and if 𝜇 is

an actual (discrete) probability distribution, then we have 𝜇 𝒜 if and only if 𝜇 is supported on

solutions to the constraints𝒜.
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The pseudo-expectations of all polynomials in the variables xx with degree at most ℓ can be

packaged into the list of pseudo-moments Ẽ𝜇xx𝑆 for all monomials xx𝑆, |𝑆| ⩽ ℓ . Since we will be

entirely concerned with polynomials up to degree ℓ , as in Definition D.2, we can treat a degree-ℓ

pseudo-distribution as being equivalently specified by the list of pseudo-moments up to degree ℓ .

Thus we will view the output of the degree-ℓ sos algorithm as being the list of all pseudo-moments

up to degree ℓ which has size 𝑂(𝑛ℓ ).
To design an algorithm based on sos, our task is to utilize the pseudo-moments in order to find

a solution point 𝑥. The sos framework extends linear programming and semidefinite programming,

which conceptually use only the degree-1 or degree-2 moments respectively. Taking sos to higher

degree enforces additional constraints on all of the moments, coming from higher-degree sum-of-

squares proofs as we will see next.

Sum-of-squares proofs. We say that a polynomial 𝑝 ∈ R[xx] is a sum-of-squares (sos) if there are

polynomials 𝑞1, . . . , 𝑞𝑟 ∈ R[xx] such that 𝑝 = 𝑞2

1
+ · · · + 𝑞2

𝑟 . Let 𝑓1, 𝑓2, . . . , 𝑓𝑚 , 𝑔 ∈ R[xx]. A sum-of-squares
proof that the constraints { 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} imply the constraint {𝑔 ⩾ 0} consists of sum-of-squares

polynomials (𝑝𝑆)𝑆⊆[𝑚] such that

𝑔 =

∑
𝑆⊆[𝑚]

𝑝𝑆 ·Π𝑖∈𝑆 𝑓𝑖 .

We say that this proof has degree ℓ if for every set 𝑆 ⊆ [𝑚], the polynomial 𝑝𝑆Π𝑖∈𝑆 𝑓𝑖 has degree at

most ℓ . When a set of inequalities𝒜 implies {𝑔 ⩾ 0}with a degree ℓ SoS proof, we write:

𝒜 ℓ {𝑔 ⩾ 0} .

A sum-of-squares refutation of𝒜 is a proof𝒜 ℓ {−1 ⩾ 0}.

Duality. Degree-ℓ pseudo-distributions and degree-ℓ sum-of-squares proofs exhibit strong duality.

In proof theoretic terms, degree-ℓ sum-of-squares proofs are sound and complete when degree-ℓ

pseudo-distributions are taken as models.

Soundness, or weak duality, states that every sum-of-squares proof enforces a constraint on

every valid pseudo-distribution.

Fact D.3 (Weak duality/soundness). If 𝜇 𝑟 𝒜 for a degree-ℓ pseudo-distribution 𝜇 and there exists a
sum-of-squares proof𝒜 𝑟′ ℬ, then 𝜇

𝑟·𝑟′+𝑟′ ℬ.

For example, there is a degree-4 proof of the ℓ 2

2
triangle inequality, which implies that every

degree-4 pseudo-distribution satisfies the ℓ 2

2
triangle inequality (this is important for sparsest cut).

Lemma D.4 (ℓ 2

2
triangle inequality). {xx2

𝑖
= xx𝑖}𝑖∈[𝑛] 4

{(xx𝑖 − xx𝑗)2 ⩽ (xx𝑖 − xx𝑘)2 + (xx𝑘 − xx𝑗)2}𝑖,𝑗,𝑘∈[𝑛].

Proof.

(xx𝑖 − xx𝑘)2 + (xx𝑗 − xx𝑘)2 − (xx𝑖 − xx𝑗)2 = 2xx2

𝑘
+ 2xx𝑖xx𝑗 − 2xx𝑗xx𝑘 − 2xx𝑖xx𝑘

= 2(xx𝑘 − xx𝑖)(xx𝑘 − xx𝑗)
= 2xx𝑘 + 2xx𝑖xx𝑗 − 2xx𝑗xx𝑘 − 2xx𝑖xx𝑘 + 2(xx2

𝑘
− xx𝑘)
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One can verify by truth table that (xx𝑘 − xx𝑖)(xx𝑘 − xx𝑗) takes values in {0, 1} for Boolean xx𝑖 , xx𝑗 , xx𝑘 ∈ {0, 1}.
Therefore its multilinear interpolation 𝑓 (xx) := xx𝑘 + xx𝑖xx𝑗 − xx𝑗xx𝑘 − xx𝑖xx𝑘 is the same as that of its square

i.e., 𝑓 (xx) = 𝑓 (xx)2 + 𝑝𝑖 · (xx2

𝑖
− xx𝑖) + 𝑝 𝑗 · (xx2

𝑗
− xx𝑗) + 𝑝𝑘 · (xx2

𝑘
− xx𝑘) for some polynomials 𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑘 with

degree ⩽ 2. This is a degree-4 sos proof of 𝑓 (xx) ⩾ 0. □

Corollary D.5. For any degree-4 pseudo-expectation Ẽ𝜇 satisfying the constraints {xx2

𝑖
= xx𝑖}𝑖∈[𝑛], for all

𝑖, 𝑗, 𝑘 ∈ [𝑛],
Ẽ𝜇(xx𝑖 − xx𝑗)2 ⩽ Ẽ𝜇(xx𝑖 − xx𝑘)2 + Ẽ𝜇(xx𝑗 − xx𝑘)2

Although we will not need it in our analysis, strong duality a.k.a (refutational) completeness

conversely shows that for a given set of axioms, there always exists either a degree-ℓ pseudo-

distribution or a degree-ℓ sos refutation.

Fact D.6 (Strong duality/refutational completeness). Suppose𝒜 is a collection of polynomial constraints
such that𝒜 ℓ−𝑟 {

∑𝑛
𝑖=1

xx2

𝑖
⩽ 𝐵} for some finite 𝐵. If there is no degree-ℓ pseudo-distribution 𝜇 such that

𝜇 𝑟 𝒜 , then there is a sum-of-squares refutation𝒜 ℓ−𝑟 {−1 ⩾ 0}.

Implementation of sos. The sum-of-squares algorithm can be implemented as a semidefinite

program (SDP) which can then be solved using, for example, the ellipsoid method. Associated

with a degree-ℓ pseudo-distribution 𝜇 is the moment tensor which is the tensor Ẽ𝜇(1, xx1, xx2, . . . , xx𝑛)⊗ℓ .
When ℓ is even, this tensor can be flattened into the moment matrix, which has rows and columns

indexed by multisets of [𝑛] with size at most ℓ/2 and whose (𝐼, 𝐽) entry is Ẽ𝜇xx𝐼xx𝐽 . Moment matrices

can now be characterized as positive semidefinite matrices with simple symmetry constraints from

flattening.

Fact D.7. A matrix Λ with rows and columns indexed by multisets of [𝑛] with size at most ℓ is a moment
matrix of a degree-2ℓ pseudo-distribution if and only if:

(i) Λ ⪰ 0

(ii) Λ𝐼,𝐽 = Λ𝐼′,𝐽′ whenever 𝐼 ∪ 𝐽 = 𝐼′ ∪ 𝐽′ as multisets

(iii) Λ{},{} = 1

The above characterization of pseudo-distributions in terms of the cone of positive semidefinite

matrices is a formulation of the sos algorithm as an SDP.

We can deduce Theorem D.1 from the general theory of convex optimization [GLS12]. The

above fact leads to an 𝑛𝑂(ℓ )-time weak separation oracle for the convex set of all moment tensors of

degree-ℓ pseudo-distributions over R𝑛
. By the results of [GLS81], we can optimize over the set of

pseudo-distributions in time 𝑛𝑂(ℓ ), assuming numerical conditions.

The first numerical condition is that the bit complexity of the input to the sos algorithm is

polynomial. The second numerical condition is that we assume an upper bound on the norm of

feasible solutions. This is guaranteed if the input polynomial system𝒜 is explicitly bounded, meaning

that it contains a constraint of the form ∥xx∥2 ⩽ 𝑀 for some 𝑀 ⩾ 0 with polynomial bit length, or if

𝒜 ℓ {∥xx∥2 ⩽ 𝑀}. For example, Boolean constraints satisfy this since {xx2

𝑖
= xx𝑖}𝑖∈[𝑛] 2

{∥xx∥2 ⩽ 𝑛}.
Due to finite numerical precision, the output of the sos algorithm can only be computed

approximately, not exactly. For a pseudo-distribution 𝜇 , we say that 𝜇 𝑟 𝒜 holds approximately
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if the inequalities in Definition D.2 are satisfied up to an error of 2
−𝑛ℓ · ∥ℎ∥ ·∏𝑖∈𝑆∥ 𝑓𝑖∥, where ∥·∥

denotes the Euclidean norm of the coefficients of a polynomial in the monomial basis.
9

In our

analysis, the approximation error is so minuscule that it can be ignored and we will simply assume

that the pseudo-distribution 𝜇 computed by the sos algorithm satisfies𝒜 without error.

9
The choice of norm is not important here because the factor 2

−𝑛ℓ
swamps the effect of choosing another norm.
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