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Abstract

Inspired by the boolean discrepancy problem, we study the following optimization
problem which we term Spherical Discrepancy: given m unit vectors v1, . . . , vm,
find another unit vector x that minimizes maxi 〈x, vi〉. We show that Spherical
Discrepancy is APX-hard and develop a multiplicative weights-based algorithm that
achieves optimal worst-case error bounds up to lower order terms. We use our algorithm
to give the first non-trivial lower bounds for the problem of covering a hypersphere by
hyperspherical caps of uniform volume at least 2−o(

√
n). We accomplish this by proving

a related covering bound in Gaussian space and showing that in this large cap regime
the bound transfers to spherical space. Up to a log factor, our lower bounds match
known upper bounds in the large cap regime.

1 Introduction

Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1} denote the surface of the sphere in Rn. Suppose we have a
collection of unit vectors v1, v2, . . . , vm ∈ Sn−1. The goal of this work is to study the following
optimization problem on the sphere, which we call Spherical Discrepancy,

min
x∈Sn−1

max
i
〈vi, x〉 .

The name comes from the boolean discrepancy problem in which x is required to be in
{−1,+1}n. The unit-norm requirement on x is crucial, otherwise the minimum is always
either zero (achieved by the zero vector) or unbounded. Spherical Discrepancy is a
relaxation of the boolean discrepancy problem and a primary task of this paper is to adapt
and improve upon algorithms from the boolean domain.

The Spherical Discrepancy problem is intimately connected to the following cov-
ering problem on Sn−1: given m, what is the smallest value θ such that m spherical caps of
angular radius θ can cover Sn−1? Given a unit vector v ∈ Sn−1, corresponding to a pole, the
cap associated with this pole is given by {x ∈ Sn−1 : 〈v, x〉 ≥ cos θ}. Thus, a set of caps of
angular radius θ covers the sphere if and only the value of the Spherical Discrepancy
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instance on the poles is at least cos θ. This connection allows for a natural translation from
algorithms for Spherical Discrepancy to algorithmic lower bounds for the cap covering
problem: given a sparse set of caps, by running the Spherical Discrepancy algorithm
on the poles we can produce a witness that lies outside of all the caps.

In this paper we develop an algorithm for Spherical Discrepancy and use the above
connection to prove the first non-trivial lower bounds for this sphere covering problem in
what we call the large cap regime. In this regime, the volume of each spherical cap is required
to be significantly large relative to the volume of the sphere. More precisely, each cap must
cover a 2−

√
n fraction of Sn−1. Outside of the large cap regime (and the regime in which the

caps are very tiny), to the best of the authors’ knowledge, no nontrivial lower bounds are
known.

1.1 Prior Work on Spherical Discrepancy

There are a few immediate algorithmic observations we can make about the Spherical
Discrepancy problem. If Sn−1 is replaced by a convex body, Spherical Discrepancy
can be efficiently solved via standard convex programming techniques. In the case of the
non-convex sphere, there are two simple exact algorithms with worst-case runtimes mΩ(n):
set up Spherical Discrepancy directly as a quadratic program, or compute a spherical
Voronoi diagram then search for a cell of maximal radius. Studying the problem under a
different name, Petković et al [PPL12] develop a sophisticated recursive algorithm which
is efficient in practice though it still has worst-case runtime mΩ(n). There are additional
algorithms and applications in R3, see for example Cazals and Loriot [CL09]. For a number
of applications with large n, see [PPL12].

It is NP-hard to construct a PTAS for Spherical Discrepancy i.e. to output a
solution whose value is within a factor 1 + ε of the true optimum (cf. Section 5). As in the
boolean discrepancy problem, we are interested in poly(m,n)-time approximation algorithms
which achieve a worst-case bound independent of the true optimum value of the instance.
With this goal in mind, it is natural to ask how well a uniformly random unit vector x
performs. In the spherical setting, it is easy to show via a union bound that with high
probability a vector x ∈R S

n−1 achieves

〈vi, x〉 ≤ O

(√
lnm

n

)
for all i. We now compare this to the boolean version of the problem, and describe the
improvements in that domain.

In the most general boolean discrepancy problem, we are given an m-by-n matrix A,
and the goal is to minimize ‖Ax‖∞ for x ∈ {±1}n. Representing the rows of the matrix by
vi, this is equivalent to minimizing the largest inner product |〈x, vi〉|. A particularly well-
studied case of the boolean discrepancy problem assumes that A is the incidence matrix of a
set system i.e. the entries are either from {−1,+1} or {0, 1}. In this case picking a uniform
x ∈R {−1,+1}n is enough to achieve |〈vi, x〉| ≤ O

(√
n logm

)
for all i. A fundamental
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result of discrepancy theory is Spencer’s “six standard deviations suffice” theorem, which
says that this can be asymptotically improved to O

(√
n log m

n

)
,

Theorem 1 [Spe85]. Given v1, . . . , vm ∈ {0, 1}n with m ≥ n, there is x ∈ {−1,+1}n such
that

|〈vi, x〉| ≤ 6

√
n log

(m
n

+ 1
)

for all i.

A famous open problem in discrepancy theory, the Komlós conjecture, states that (in the
case m = n) a similar bound holds if we relax the set system assumption to an assumption
that the column norms of A are at most

√
n (or after normalization, at most 1),

Conjecture 1. Let w1, . . . , wn ∈ Rn be vectors with ‖wi‖2 ≤ 1, and arrange the wi as
columns of a matrix W . There is a boolean vector x ∈ {+1,−1}n so that ‖Wx‖∞ = O(1).

When the row norms of A are also assumed to have norm at most 1 (which is often
without much loss of generality, see Section 4), this is the setting in which Spherical
Discrepancy is a relaxation of the boolean discrepancy problem. Furthermore, we will
work with the “one-sided” discrepancy 〈vi, x〉 rather than using the absolute value of the inner
product. This difference is mostly inconsequential as one can throw in −vi to bound the
absolute value. The absence of absolute value corresponds more naturally to the geometric
questions we consider in Section 3.

Spencer’s argument is evidently an improvement on the random bound in the case
m = O(n). However, if m ≥ n1+c for some c > 0, then the qualitative bound O(

√
n log m

n
)

is equivalent to O(
√
n logm) – the same as in the random case. Thus one must look into

the actual constants and error terms to see if Spencer’s bound beats the random bound
whenever m is significantly superlinear in n. In fact, the precise constant in the random
argument is

√
2n lnm · (1 + o(1)), which is definitely stronger than 6

√
n log m

n
when m is

superpolynomial in n; we are not sure the exact regime of m in which Spencer’s analysis
(or any of the follow-up reproofs of the result) beats the random argument. These issues of
constant factors will plague us in the spherical case, where we must prove tight results all
the way up to m = 2

√
n.

Spencer’s theorem was only recently made algorithmic, and in the last few years there
has been a spate of recent activity on algorithmic solutions to problems in discrepancy
theory [Ban12, LM15, BDG19, BDGL18, LRR17]. Our algorithm for Spherical Discrep-
ancy is based on a deterministic algorithm for Spencer’s theorem due to Levy, Ramadas,
and Rothvoss [LRR17], which itself is a derandomization of a random walk-based algorithm
of Lovett and Meka [LM15]. The Lovett-Meka algorithm is part of a general class of par-
tial coloring algorithms for boolean discrepancy which produce a coloring x ∈ {−1,+1}n
in log n rounds. In each round, half the remaining coordinates are set to +1 or −1. Our
basic strategy for the Spherical Discrepancy problem is to take the first round only of
a partial coloring algorithm, as this produces a vector with large norm; there is no need to
further round it towards a corner of the boolean hypercube.
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Finally, we mention vector discrepancy, a different relaxation of boolean discrepancy
used by Lovasz [Lov00]. Fix an m-by-n matrix A. Instead of assigning {±1} to entries of a
vector x, we assign unit vectors xi in some larger dimension, with the goal to minimize

max
i=1,...,m

∥∥∥∥ n∑
j=1

Aijxi

∥∥∥∥
2

.

When the dimension of xi is n, the problem is convex, and recently Nikolov [Nik13] was able
to verify the Komlós conjecture in this setting using techniques from convex programming. In
the spherical setting we have a global constraint

∑n
i=1 x

2
i = 1 whereas vector discrepancy (like

most other convex relaxation techniques) relaxes each variable independently. Practically
speaking, the critical difference between the spherical and vector relaxations is that the
domain of spherical discrepancy is non-convex and so we no longer have access to powerful
tools such as duality.

For more background about discrepancy theory, see the book by Chazelle [Cha00].

1.2 Prior Work on Sphere Covering Lower Bounds.

The spherical cap with pole v ∈ Sn−1 and angular radius θ is the set

{x ∈ Sn−1 | 〈x, v〉 ≥ cos θ}.

The normalized volume of a measurable set C ⊆ Sn−1 is

vol(C)
def
= Pr

x∈RSn−1
[x ∈ C].

There are two dual questions to ask about spherical caps. The packing question asks:
given m, what is the largest δ so that m spherical caps of normalized volume δ can be
arranged disjointly in Sn−1? The covering question asks: given m, what is the smallest
δ so that there are m spherical caps of normalized volume δ which cover Sn−1? For both
of these questions, a trivial volume bound applies: if m caps of normalized volume δ cover
(respectively pack) Sn−1, then necessarily δ ≥ 1/m (respectively δ ≤ 1/m). This could only
be achieved if the caps could be arranged disjointly on the surface of the sphere, which is
impossible except for the case of two hemispheres. The quantity δm is called the density of
the packing/covering.

The study of these questions originates from the study of maximum density pack-
ings/minimum density coverings of spheres in Rn. The pioneering work of Rogers and coau-
thors [Rog58, CFR59] led to the simplex bound, which states that the density of a packing
or covering cannot beat a natural strategy based on tiling Rn with a regular simplex (note
that Rn for n ≥ 3 cannot be tiled with a regular simplex, so this bound is not tight).

In spherical space (and hyperbolic space), the simplex bound for packing was extended
by Böröczky [Bör78]. For covering in spheres, we have very few bounds outside of the
trivial volume bound, and the simplex bound for covering, stated implicitly in [CFR59] and
explicitly in [Bör04, Conjecture 6.7.3], has remained unproven,
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Conjecture 2. If a set of m spherical caps each of normalized volume δ < 1/2 covers Sn−1,
then

mδ ≥ τn,δ

where τn,δ is defined for the interested reader in Section 6. For δ sufficiently small,
the conjectured density is τn,δ ≈ n

e
√
e
i.e. a factor of Ω(n) higher than the trivial volume

bound.1 It should be noted that in general there is no perfect relationship between packing
and covering, for example taking an optimal packing and extending the caps just enough
to cover the whole of Sn−1 will not result in an optimal covering; there are coverings with
smaller density [SV05]. In general much more is known about packings than coverings across
Euclidean, spherical, and hyperbolic spaces.

Conjecture 2 has been shown to hold for n = 3 [Bör04, Theorem 5.1.1]. Conjec-
ture 2 is tight when Sn−1 can be tiled with regular spherical simplices using m vertices,
corresponding to the projection to Sn−1 of an n-dimensional {3, 3, · · · , p} Coxeter polytope
such as the regular simplex (m = n + 1) and the cross-polytope (m = 2n), as observed by
Coxeter [Cox63].

Conjecture 2 has also been confirmed in the regime where δ is small enough that the
caps have angular radius θ ≤ 1√

n
. In this regime, the caps are small enough that Sn looks

very similar to Rn, and the lower bound techniques used by Coxeter-Rogers-Few [CFR59]
in Rn are enough to verify Conjecture 2. The authors of [CFR59] note that their technique
can be extended to Sn, but they do not analyze the full range of δ for which their proof goes
through. Their result only holds when θ ≤ 1/

√
n; see [Bör04, Lemma 6.8.4] for an exposition

of the proof.

There is also a nontrivial covering lower bound in the regime where δ ≥ 1/n, which
corresponds to caps of angular radius π

2
− Θ(n−1/2). The lower bound comes from the

Lusternik-Schnirelmann theorem,

Theorem 2. If Sn−1 is covered by n open or closed sets, then one of those sets contains a
pair of antipodal points.

Since a spherical cap with any volume δ < 1/2 does not contain antipodal points, any
cover must use at least m ≥ n + 1 caps. When δ = Ω(1) this translates to a linear lower
bound on the density mδ = Ω(n), which matches Conjecture 2 up to a constant. In the
60 years since [CFR59], we are aware of no covering lower bounds better than the trivial
mδ ≥ 1 outside of these two extremes.

On the flip side, there are constructions of spherical cap covers that nearly match Con-
jecture 2,

Theorem 3 [BW03]. For any 0 < ϕ ≤ arccos 1√
n
, there is an arrangement of spherical balls

with radius ϕ with density at most

c · n ln(1 + (n− 1) cos2 ϕ)

1We were unable to find a reference for the seemingly obvious fact that τn,δ ≥ c · n for some positive
constant c. See Conjecture 5.
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where c is an absolute constant.

Translating the assumption on ϕ to the parameterization by δ, the upper bound on ϕ
says that δ is less than some fixed constant. The density bound achieved by the theorem is
O(n) for δ = Θ(1) and increases to O(n log n) for constant θ. The authors provide another
quasilinear bound with a tighter constant,

Theorem 4 [BW03]. For any θ < π
2
, there is a covering by spherical caps of radius θ with

density at most
n lnn+ c · n ln lnn

where c is an absolute constant.

We also point out the relationship with hitting sets for spherical caps. A set of points
P ⊂ Sn−1 is a hitting set for spherical caps of volume δ if for every spherical cap C with
volume δ, we have P ∩C 6= ∅. Observe that a hitting set is the same as a cover by spherical
caps. The constructions above yield hitting sets for caps of volume δ of size Õ(n/δ) —
however, they are randomized. Rabani and Shpilka [RS09] show how to deterministically
construct a hitting set of size poly(n, 1/δ). Their construction works only in the large cap
regime, δ ≥ 2−Ω(

√
n).

1.3 Our Results and Organization of the Paper.

In Section 2 we give an algorithm for Spherical Discrepancy which, analogously to
Spencer’s theorem, improves upon the worst-case guarantee of the random algorithm,

Theorem 5. Let m ≥ 16n and v1, v2, . . . , vm ∈ Sn−1 be unit vectors. We can find a vector
x ∈ Sn−1 such that

〈vi, x〉 ≤
√

2 ln m
n

n
·
(

1 +O

(
1

log m
n

))
for all i, via a deterministic algorithm that runs in time polynomial in m and n.

The algorithm behind Theorem 5 is based on a recent deterministic multiplicative
weights algorithm for boolean discrepancy due to Levy, Ramadas, and Rothvoss [LRR17].
The crux of the above theorem is that we are able to achieve the optimal constant (but not
optimal error term), for a large range of m up to essentially 2

√
n,

Theorem 6. For every choice of 2−o(
√
n) < δ < 1

n2 , there is a parameter 1/δ ≤ m ≤ 2n lnn
δ

and unit vectors v1, . . . , vm ∈ Sn−1 such that, for any x ∈ Sn−1 there is a vi with

〈x, vi〉 ≥
√

2 ln m
n

n
·

(
1− o

(
1√

log m
n

))
.

The proof of Theorem 6 is in Section 3. In that section, we work out the consequences of
the relationship between the Spherical Discrepancy problem and covering the sphere by
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spherical caps. Our primary result is an application of Theorem 5 to prove the simplex bound
for spherical space (Conjecture 2) up to a log factor for caps that are not too small,2

Theorem 7. If a set of m spherical caps each of normalized volume 2−o(
√
n) ≤ δ < 1

2
covers

Sn−1, then

δ ≥ Ω

(
n

m
√

log(1 + m
n

)

)
.

We are able to beat the trivial volume lower bound mδ ≥ 1 in this theorem exactly
when the algorithm behind Theorem 5 beats the trivial random bound. This requires us to
carefully optimize the performance of the algorithm. The lower bound is algorithmic in the
sense that, given a list of the m caps of volume δ that does not meet the bound, there is a
poly(n,m) time algorithm that finds a point outside all caps. The lower bound assumes that
the spherical caps have normalized volume at least 2−

√
n, a setting we term the large cap

regime. We explain in Section 3 how the assumption δ ≥ 2−
√
n naturally corresponds to a

geometric property of this regime of δ, namely that caps of this volume have approximately
the same spherical measure as the Gaussian measure of their corresponding halfspaces. When
this approximation holds, the lower bound follows as a corollary of the following covering
lower bound for Gaussian space, which itself follows naturally from Theorem 5,

Theorem 8. If m halfspaces of Gaussian measure δ < 1
2
cover the

√
n-sphere in Rn, then

δ ≥ Ω

(
n

m
√

log(1 + m
n

)

)
.

The details of the proof are found in Section 3. Finally, in Section 3 we also study the
performance of the following algorithm for generating sphere packings: run the algorithm
behind Theorem 5 for m iterations. We show

Theorem 9. Let 16n ≤ m ≤ 2o(
√
n). There is a deterministic algorithm which runs in time

poly(m,n) that outputs m points v1, v2, . . . , vm ∈ Sn−1 such that

〈vi, vj〉 ≤
√

2 ln m
n

n
·
(

1 +O

(
1

log m
n

))
for all pairs i, j. Taking the maximal radius r such that spherical caps of radius r around

the vi are disjoint produces a packing with density Ω

(
n

2n
√

log m
n

)
.

In Section 4 we show that the natural relaxation of the Komlós conjecture for spherical
discrepancy is true,

Theorem 10. Let w1, . . . , wn ∈ Rn be vectors with ‖wi‖2 ≤ 1, and let W be the matrix with
the wi as columns. Then we can find a unit vector x ∈ Sn−1 such that

‖Wx‖∞ = O

(
1√
n

)
2The “log factor” becomes n1/4 when m is near 2

√
n.
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in time polynomial in n.

The algorithm in Section 2 can be modified to show this, and we explain how to do this,
though for the proof as pointed out by the anonymous referee it suffices to simply cite the
partial coloring lemma from boolean discrepancy.

In Section 5 we show that the Spherical Discrepancy problem is APX-hard via a
gap-preserving reduction from NAE-3-SAT,

Theorem 11. There is a constant C > 1 so that it is NP-hard to distinguish between
instances of Spherical Discrepancy with m = O(n) with value at most 1√

n
, and instances

with value at least C√
n
.

Lastly, in Section 6 we conclude with some further questions.

All asymptotic notation in this paper is in terms of n, while different parameters such
as m and δ are functions of n. The functions exp and ln denote base e, whereas log is used
to denote base 2.

2 Multiplicative Weights for Spherical Discrepancy.

In this section we develop the algorithm for Theorem 5,

Theorem 5. Let m ≥ 16n and v1, v2, . . . , vm ∈ Sn−1 be unit vectors. We can find a vector
x ∈ Sn−1 such that

〈vi, x〉 ≤
√

2 ln m
n

n
·
(

1 +O

(
1

log m
n

))
for all i, via a deterministic algorithm that runs in time polynomial in m and n.

It is critical in our applications to have both the small error term and the constant√
2 in the bound of Theorem 5. In the setting of boolean discrepancy, the partial coloring

method introduces a flexible constant and so it is difficult in that setting to achieve the
correct constant. In fact, as pointed out by the anonymous reviewer, an application of the

partial coloring lemma can be used to prove Theorem 5 with the weaker bound O
(√

log m
n

n

)
.

We do not give the details though it essentially matches the argument in Section 4. In the
spherical setting, we are able to skirt partial coloring because the set of “colorings” in our
domain is Sn−1, which can be rounded to by simply normalizing a “candidate coloring”.

The algorithm behind Theorem 5 is based on a recent deterministic multiplicative
weights-based algorithm for boolean discrepancy due to Levy, Ramadas, and Rothvoss [LRR17].
In the general setting of the multiplicative weight update (MWU) method, we are trying to
make repeated decisions using the opinions of a collection of “experts”; some of the experts
tell us good advice whereas others may not, and we must learn a combination of the experts
which collectively leads to a wise decision. Though the analogy is not perfect, in our case
the decision is a small update direction for a candidate coloring x. Multiplicative weights
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can often be used to obtain an upper bound on the worst-case number of “mistakes” from
following any of the experts, and in our case that corresponds to a bound on the worst-
case inner product with any of the vi. For more on multiplicative weights, see the survey
paper [AHK12].

Similarly to their algorithm, we slowly grow a candidate coloring x which is initially
zero, maintaining a multiplicative weight for each input vector vi to help choose the next
update direction. The weights wi essentially equal exp(〈x, vi〉) (Lemma 2.4). We choose an
update direction for x from an eigenspace corresponding to a small eigenvalue of the matrix∑m

i=1wivv
>, subject to lying in a particular subspace of (linear) constraints. Ideally, we

would like to move in the smallest eigenspace of this matrix. For example, consider the case
when the vectors vi are mutually orthogonal. If at each timestep we make a small update in
the direction of the vi with the current smallest weight, and then update the weights, this
will ensure all weights remain approximately equal. Stopping the algorithm when ‖x‖2 = 1
will produce x with the optimal 1√

n
inner product with each vector. However, in general it is

impossible to move in the smallest eigenspace and also the subspace of constraints. Improving
on [LRR17], we are able to obey the constraints yet move in a direction that is essentially
no worse than the average eigenvalue (Lemma 2.2). Under the heuristic assumption that the
weights remain somewhat balanced during the run of the algorithm, this is nearly as good
as moving in the smallest eigenspace.3

The proof of correctness also follows the lines of Levy, Ramadas, and Rothvoss, though
few technical details in the algorithm and the proof remain the same. We must do a careful
induction to show that our algorithm is well-defined, and a careful analysis and choice of
parameters to ensure it meets Theorem 5.

2.1 The Algorithm.

Let v1, . . . , vm be unit vectors in Rn. Note that the guarantee of the theorem is trivial for
m ≥ n exp(n/2). If the input m is this large, we return any unit vector. For the remainder
of this algorithm we assume that m ≤ n exp(n/2).

For a PSD matrix M ∈ Rn×n, denote the eigenvalues of M by µ1(M) ≥ µ2(M) ≥ · · · ≥
µn(M) with corresponding eigenvectors ui(M) to µi(M). We denote by S⊥ the orthogonal
complement of the span of a set of vectors S.

We will use parameters λ, ρ, δ, and T .

Description of the parameters:

• λ =
√

ln m
n

• δ = 1
n3 is the step size for updates to x(t)

• T = 2(n−5)
δ2

is the number of iterations

3The weights won’t remain somewhat balanced, because for example two vi may point in opposite direc-
tions. But we hope that the “critical” weights will be somewhat balanced.
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MWU for Spherical Discrepancy
Input: unit vectors v1, . . . , vm ∈ Sn−1

x(0) ← 0n

w
(0)
i ← exp(−λ2)

for t = 0, . . . , T :
I(t) ← {i ∈ [m] : w

(t)
i ≥ 2}

M (t) ←
∑

i/∈I w
(t)
i viv

ᵀ
i

P (t) ← {x(t)} ∪ {
∑

i∈[m] w
(t)
i vi} ∪ {vi : i ∈ I(t)} ∪

{
uj
(
M (t)

)
: 1 ≤ j ≤ n−

∣∣I(t)
∣∣− 3

}
y(t) ←any unit vector in P (t)⊥

x(t+1) ← x(t) + δy(t)

for i = 1, . . . ,m:
w

(t+1)
i ← w

(t)
i · exp(λ

〈
vi, δy

(t)
〉
) · ρ

return x(T )/‖x(T )‖2

• ρ = exp
(
− δ2λ2

2(n−5)
· (1 + λδn)

)
is the discount factor in the weight update step. ρ is

very slightly less than 1.

The initial weights w(0)
i don’t affect the output of the algorithm so long as they’re uni-

form.

2.2 Runtime Analysis

The vectors vi should be specified to 2 log n bits of precision so that the error in 〈vi, x〉 can
be incorporated into the error term of Theorem 5.

In addition, all numerical calculations should be truncated to 30 log n bits of precision.
The statements of all lemmas can be modified to include a polynomially small error term,
which ultimately does not affect the statement of Theorem 5. As an example, though the
value ρ is close to 1, it has only Θ(log n) zeros after the decimal point, and truncating
to 30 log n bits is enough to approximate it throughout the T = O(n7) iterations of the
algorithm.

Each iteration takes O(mn2 + n3) time: evaluating M takes time mn2, and computing
an eigendecomposition of M (t) can be done in time O(n3). There are T = O(n7) iterations,
for an overall runtime of O(mn9 + n10).

It seems likely that fewer iterations T are sufficient (we must set the corresponding

δ =
√

2(n−5)
T

). Matrix multiplication methods could also be used to lower the exponent
in the time needed to compute an eigendecomposition, but we don’t optimize the runtime
here.
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2.3 Bounding the Maximum Inner Product

The analysis of the algorithm will use the potential function Φ(t),

Φ(t)
def
=

m∑
i=1

w
(t)
i .

Initially, the potential function is Φ(0) =
∑m

i=1 exp(−λ2) =
∑m

i=1
n
m

= n.

We choose the discount factor ρ so that Φ(t+1) ≤ Φ(t) for every t. That is, after setting
x(t+1) ← x(t) + δy(t), each weight is increased by a factor proportional to exp

(
λ · δ

〈
vi, y

(t)
〉)
,

which seems like it could increase the potential; ρ is chosen just small enough to counteract
the increase. The key to producing a tight bound on

〈
vi, x

(T )
〉
lies in maximizing ρ while

still ensuring that the potential is decreasing.

As written, it is not clear that the algorithm is well-defined; it is a priori possible that
the space P (t)ᵀ is trivial and does not contain a unit vector. We say that the algorithm
succeeds up to time t if the following conditions occur:

(i) P (t0)⊥ 6= 0 for every t0 < t (and therefore all weights w(t0)
i are properly defined as are

w
(t)
i ).

(ii) The potential function Φ is nonincreasing from time 0 to time t.

We now prove that if the algorithm succeeds up to time t, it succeeds up to time t+ 1,
and so by induction the algorithm succeeds up to time T .

Lemma 2.1. If
∣∣I(t)

∣∣ ≤ n− 3, then P (t)⊥ 6= 0.

Proof. We need to check that dim(span(P (t))) < n. Of the four sets composing P (t), the
first three contain at most

∣∣I(t)
∣∣ + 2 vectors. Under the assumption on

∣∣I(t)
∣∣ the fourth set

contains at most n−
∣∣I(t
∣∣− 3 vectors and so the result follows.

If the potential function is nonincreasing up to time t, then Φ(t) ≤ n. Therefore, on
iteration t+ 1 the set I(t) has size at most n

2
, and by the lemma just above P (t)⊥ contains a

unit vector and the next set of weights will be well-defined. This fulfills the first condition
for success up to time t + 1. It remains to work towards the second condition. We at least
know that Φ(t+1) is well-defined because the weights w(t+1)

i are well-defined — we just need
to prove Φ(t+ 1) ≤ Φ(t).

Lemma 2.2. For each unit vector y ∈ P (t)⊥ , one has y>M (t)y ≤ Φ(t)
n−5

Proof. Because of the fourth set composing P (t), y is perpendicular to many eigenvalues of
M (t), so we bound the max eigenvalue of the remaining eigenspaces. Recall that

M (t) =
∑
i/∈I(t)

w
(t)
i viv

>
i .

11



For any i ∈ [m] , we have tr
(
viv
>
i

)
= ‖vi‖2 = 1, thus

tr
(
M (t)

)
=
∑
i 6∈I(t)

w
(t)
i =

m∑
i=1

w
(t)
i −

∑
i∈I(t)

w
(t)
i ≤ Φ (t)− 2

∣∣I(t)
∣∣ .

On the other hand tr
(
M (t)

)
is the sum of the eigenvalues of M (t). By a use of Markov’s

inequality, the (n−
∣∣I(t)

∣∣− 2)th largest eigenvalue of M (t) is at most
Φ(t)−2|I(t)|
n−|I(t)|−2

. Symbolically,

µn−|I(t)|−2 ≤
Φ (t)− 2

∣∣I(t)
∣∣

n− |I(t)| − 2
=

Φ(t)

n− 5
·

(n− 5)

(
1− |I

(t)|
n

)
n− |I(t)| − 2

·
1− 2|I(t)|

Φ(t)

1− |I
(t)|
n

From the inductive assumption that Φ(t) is nonincreasing, Φ(t) ≤ Φ(0) = n, and
therefore the right term is bounded by 1. The middle term is

n−
∣∣I(t)

∣∣− 5 +
5|I(t)|
n

n− |I(t)| − 2

The bound
∣∣I(t)

∣∣ ≤ n/2 shows that this is also at most 1. Hence µn−|I(t)|−2 ≤
Φ(t)
n−5

. Since
y is a linear combination of eigenvectors with eigenvalues at most this value, we have
y>M (t)y ≤ Φ(t)

n−5
.

Fact 2.1. For any 0 ≤ x ≤ 1,

ex ≤ 1 + x+
x2

2
+
x3

2
.

Proof. See Appendix A.

Lemma 2.3. Φ (t+ 1) ≤ Φ(t).

Proof. The recursive update for the weights at time t+ 1 is given in the algorithm,

Φ(t+ 1) =
m∑
i=1

w
(t+1)
i =

m∑
i=1

w
(t)
i · exp

(
λδ
〈
vi, y

(t)
〉)
· ρ.

We assumed that m ≤ n exp(n/2) so that λ ≤
√
n/2 and λδ〈vi, y(t)〉 ≤ λδ ≤ 1, and we can

apply the previous Lemma,

Φ(t+ 1)/ρ ≤
m∑
i=1

w
(t)
i

(
1 + λδ

〈
vi, y

(t)
〉

+
λ2δ2

〈
vi, y

(t)
〉2

2
+
λ3δ3

〈
vi, y

(t)
〉3

2

)

=
m∑
i=1

w
(t)
i + λδ

〈
m∑
i=1

w
(t)
i vi, y

(t)

〉
+
λ2δ2

2

∑
w

(t)
i

〈
vi, y

(t)
〉2

+
λ3δ3

2

∑
w

(t)
i

〈
vi, y

(t)
〉3
.

12



Since y(t) ∈ P (t)⊥ , the second term is zero. Furthermore,
∑m

i=1w
(t)
i

〈
vi, y

(t)
〉2

= y(t)>M (t)y(t),
so by Lemma 2.2 we have,

Φ(t+ 1)/ρ ≤ Φ(t) +
λ2δ2

2(n− 5)
Φ(t) +

λ3δ3

2

∑
w

(t)
i

〈
vi, y

(t)
〉3︸ ︷︷ ︸

≤1

≤ Φ(t) +
λ2δ2

2(n− 5)
Φ(t) +

λ3δ3

2
Φ(t)

= Φ(t) ·
(

1 +
λ2δ2

2(n− 5)
(1 + λδn)

)
Φ(t+ 1)/ρ ≤ Φ(t) · exp

(
λ2δ2

2(n− 5)
(1 + λδn)

)
.

In the last line, we use the inequality 1 + x ≤ ex. The exponential term is exactly 1/ρ,
therefore we conclude Φ(t+ 1) ≤ Φ(t).

This finishes the proof by induction that the algorithm succeeds up to time T . We now
proceed to bound the max inner product

〈
vi, x

(T )
〉
, starting with a few lemmas.

Lemma 2.4. w(t)
i = exp

(
λ
〈
vi, x

(t)
〉
− λ2

)
· ρt

Proof. The weights are initially exp(−λ2). Each iteration they are multiplied by a factor of
ρ, and also by exp(λδ

〈
vi, y

(t)
〉
), so

w
(t)
i = exp

(
λ

〈
vi,
∑
t′<t

δy(t′)

〉
− λ2

)
· ρt.

On the other hand, x(t) =
∑

t′<t δy
(t′).

Lemma 2.5. ‖x(t)‖2 = δ
√
t

Proof. Note that x(t) = x(t−1) + δy(t−1), and since y(t) is a unit vector orthogonal to x(t) due
to the subspace U1,

‖x(t)‖2
2 = ‖x(t−1)‖2

2 + δ2‖y(t−1)‖2
2 = ‖x(t−1)‖2

2 + δ2.

Since x(0) = 0n, the result follows.

Lemma 2.6. At all times t, the weights satisfy maxiw
(t)
i ≤ 3.

Proof. Once a weight becomes greater than 2, it moves into the set I(t) and further moves
are orthogonal to vi, meaning the weight only decreases due to ρ. On the update that the
weight moves into I(t),

w
(t)
i = w

(t−1)
i · exp(λ · δ

〈
vi, y

(t−1)
〉
) · ρ

13



≤ 2 · exp(λ · δ) · ρ
≤ 2 · exp(λ · δ) ≤ 3

Note that the weight may move out of and back into I(t) in the future due to the discount
factor ρ.

We are now in a position to prove Theorem 5. We will take x to be x(T )/‖x(T )‖.

Lemma 2.7.
〈
vi, x

(T )/‖x(T )‖
〉
≤ λ

√
2
n

+O
(

1
λ
√
n

)
Proof. We have an exact expression for the weights by Lemma 2.4 and a bound on the
weights by Lemma 2.6,

w
(T )
i = exp

(
λ
〈
vi, x

(T )
〉
− λ2

)
· ρT ≤ 3.

We take logs, solve for
〈
vi, x

(T )
〉
, and optimize the resulting bound.

λ
〈
vi, x

(T )
〉
− λ2 + T ln ρ ≤ ln 3〈

vi, x
(T )
〉
≤ λ− T ln ρ

λ
+

1

λ
ln 3

Plug in ln ρ = − λ2δ2

2(n−5)
· (1 + λδn) and normalize by ‖x(T )‖ = δ

√
T (Lemma 2.5),

〈
vi, x

(T )/‖x(T )‖
〉
≤ λ

δ
√
T

+
λδ
√
T

2(n− 5)
· (1 + λδn) +

1

λδ
√
T

ln 3

≤

(
λ

δ
√
T

+
λδ
√
T

2(n− 5)

)
(1 + λδn) +

1

λδ
√
T

ln 3.

The choice of parameters δ
√
T =

√
2(n− 5) balances the first two terms to the value λ√

2(n−5)
.

〈
vi, x

(T )/‖x(T )‖
〉
≤ λ

√
2

n− 5
(1 + λδn) +O

(
1

λ
√
n

)
Recalling that λ ≤

√
n and δ = 1

n3 , we can absorb the term λδn into the remaining error,

= λ

√
2

n− 5
+O

(
1

λ
√
n

)
.

Bounding
√

1
n−5
≤
√

1
n

+ 5
n3/2 shows we can incorporate this term into the error as well.

Finally, if we plug in λ =
√

log m
n
to Lemma 2.7 we recover Theorem 5.
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3 Lower Bounds for Covering Problems.

As described in the introduction, algorithms for Spherical Discrepancy immediately
yield algorithmic lower bounds for the problem of covering the hypersphere by hyperspherical
caps, which will let us show the following theorem,

Theorem 7. If a set of m spherical caps each of normalized volume 2−o(
√
n) ≤ δ < 1

2
covers

Sn−1, then

δ ≥ Ω

(
n

m
√

log(1 + m
n

)

)
.

Essentially, the proof boils down to the following calculation: set the right-hand side
of Theorem 5 equal to cos θ and solve for the normalized volume δ of a spherical cap with
angular radius θ. The calculation is simplified by noticing that Theorem 5 has a form which
applies perfectly to the following question about Gaussian space: how many halfspaces of
Gaussian measure δ are required to cover the surface of the

√
n-sphere? Theorem 5 gives an

algorithmic lower bound for this question for every δ,

Theorem 8. If m halfspaces of Gaussian measure δ < 1
2
cover the

√
n-sphere in Rn, then

δ ≥ Ω

(
n

m
√

log(1 + m
n

)

)
.

In order to reduce Theorem 7 to Theorem 8, all we require is a restatement of the
classical fact attributed to Poincaré (but see [DF87] for a more complete history) that the
first coordinate of a uniformly random point on the sphere is approximately distributed
like N (0, 1

n
); modern formulations appear in [Sta82, Spr07]. However, we need a more

quantitative version of the bound (Lemma 3.1), and we spend some work showing this.

This approach also explains the assumption of the theorem δ ≥ 2−o(
√
n), a setting which

we call the large cap regime. When the spherical caps have at least this volume, the ap-
proximation between spherical and Gaussian space is good enough to deduce Theorem 7
from Theorem 8. More specifically, if C = {x ∈ Sn−1 : 〈x, p〉 ≥ cos θ} is a spherical cap,
then the halfspace H = {x ∈ Rn : 〈x, p〉 ≥

√
n cos θ} has γ(H) ≈ vol(C) within a constant

factor.

An important regime for Conjecture 2 that is outside the large cap regime is when
θ ∈ (0, π/2) is a constant. The corresponding δ is

δ = Θ

(
sinn θ√

n

)
.

For example, the case θ = π/6 corresponds to the extensively-studied kissing numbers [BDM12,
JJP18]. For δ in this range, the approximation in Lemma 3.1 is off by an exponential factor,
and one cannot deduce any nontrivial spherical measure lower bound.
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Note that the known spherical cap constructions show that Theorem 8 is tight up to a
log factor provided δ ≥ 2−o(

√
n). When δ is significantly smaller than 2−

√
n, Theorem 8 is not

tight and the volume bound for spherical caps provides an exponential improvement.

There is a slightly more natural version of the Gaussian covering problem which un-
fortunately we are not able to resolve. We say that a set S is a (1 − ε)-cover of a random
variable X if Pr[X 6∈ S] ≤ ε. We say a family of sets is a (1− ε)-cover if their union is. If m
halfspaces of Gaussian measure δ are a 1/2-cover of a standard Gaussian random variable,
then there is a trivial volume lower bound mδ ≥ 1/2. We conjecture a linear density lower
bound for this covering problem,

Conjecture 3. If m halfspaces of Gaussian measure δ < 1
2
are a 1/2-cover of a standard

n-dimensional Gaussian random variable, then

m · δ ≥ Ω (n) .

The choice of 1/2 corresponds to the fact that the Gaussian measure of the ball of
radius

√
n is approximately 1/2. Therefore a natural strategy to 1/2-cover the Gaussian

random variable is to cover the surface of the
√
n-sphere, for which the bound in Theorem 8

applies. However, we are unable to rule out the existence of 1/2-covers with smaller total
density.

3.1 Gaussian Space Lower Bound.

We now prove Theorem 8. We need the following fact,

Fact 3.1. Let ϕ and Φ denote the PDF and tail probability respectively of the standard
normal distribution,

ϕ(t) =
1√
2π

exp(−t2/2) Φ(t) =

∫ ∞
t

ϕ(s) ds

There is a constant C so that for t ≥ 1, C ϕ(t)
t
≤ Φ(t) ≤ ϕ(t)

t
.

Proof. See Appendix A.

As can be seen in the proof, the reason for such a tight error bound in Theorem 5 is
that the error appears in the exponent here, meaning even small error becomes amplified.
Now we prove Theorem 8.

Proof. Let {Hi} be a set of m halfspaces each of Gaussian measure δ whose union covers the√
n-sphere and assume for the moment that m ≥ 16n. Let vi be a normal unit vector to Hi.

By Theorem 5 we can find a vector x in the
√
n-sphere such that

〈vi, x〉 ≤
√

2 log
m

n
·
(

1 +O

(
1

log m
n

))
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for each i. Let ε = O
(

1
log m

n

)
denote the error term.

By assumption x is covered by one of the halfspaces Hi, expressed as

Hi = {x ∈ Rn | 〈vi, x〉 ≥ Φ
−1

(δ)}.

Therefore,

Φ
−1

(δ) ≤
√

2 log
m

n
· (1 + ε)

δ ≥ Φ

(√
2 log

m

n
· (1 + ε)

)
.

Applying Proposition 3.1,

δ ≥ C exp

(
−
(√

2 log
m

n
· (1 + ε)

)2

/2 · (1 + ε)−1√
2 log m

n

)

= Θ

(( n
m

)1+O(ε)

· 1√
log m

n

)
.

The component of the exponent ε = O
(

1
log m

n

)
contributes a multiplicative constant factor,

and we have the claim,

δ ≥ Ω

(
n

m
√

log(1 + m
n

)

)
.

We deal with the case in which there are fewer than 16n halfplanes. Add vectors until
we have 16n. The theorem in this case tells us

δ ≥ Ω

 n

16n
√

log 16n
n

 = Ω(1)

By the Lusternik-Schnirelmann theorem m ≥ n, therefore mδ ≥ Ω(n).

3.2 From Gaussian Space to the Sphere.

Here we prove Theorem 7 from Theorem 8. Recall our strategy: let C be a spherical cap on
Sn−1, say with equation

C = {x ∈ Sn−1 | 〈x, v〉 ≥ cos(θ)}
and let H be the halfspace with the same intersection but on the

√
n-sphere,

H = {x ∈ Rn | 〈x, v〉 ≥ cos(θ)
√
n}.

We want vol(C) ≈ γ(H) to deduce Theorem 7 from Theorem 8. For angle θ = π/2, both
shapes reduce to hemispheres, and for angle θ ≥ π/2 − O(n−1/2) both shapes have the

17



same measure Ω(1) up to o(1) via the classical theorem that
√
nx1

d→ N(0, 1) for x ∈R Sn.
The following lemma shows that the two have similar measure for angular radius at least
π/2− o(n−1/4), or equivalently when one shape has measure at least 2−o(

√
n),

Lemma 3.1. Let C ⊂ Sn−1 be a spherical cap with angular radius θ. Let

H = {x ∈ Rn | 〈x, v〉 ≥
√
n cos θ}

where v is some fixed vector, let φ = π/2− θ, and assume φ = o(n−1/4). Then

vol(C) ∼ γ(H) ∼ Φ(
√
nφ).

The intuition on why this is the correct assumption on θ is that both C and H have the
same intersection with {−1,+1}n, and for this θ both vol(C) and γ(H) are well estimated
by sampling a uniform boolean point. To explain further, the particular halfspace H = {x ∈
Rn |

〈
x, ~1√

n

〉
≥ t} has Gaussian measure Φ(t). On the other hand, the measure can be

estimated by sampling X ∈R {+1,−1}n. Setting S = 1√
n

∑n
i=1Xi, by the Central Limit

Theorem we expect Pr[S ≥ t] ≈ Φ(t); this is a good approximation for constant t, and in
fact for t up to n1/4. However, after this point the tail probability becomes exponentially
smaller (the subject of large deviation theory is to determine the correct exponent, which
in this case is given for all t by the Chernoff-Hoeffding theorem). One interpretation of the
lemma is that we prove the boolean sampling procedure also accurately estimates vol(C) in
the range where it estimates γ(H), namely t ≤ n1/4.

There is another geometric interpretation of the lemma. Let G be the cone in Rn that
contains C,

G =

{
x ∈ Rn :

〈
x

‖x‖2

, v

〉
≥ cos(θ)

}
.

Due to the rotational symmetry of the Gaussian measure, vol(C) = γ(G). The halfspace
and the cone are two natural bodies that pass through C and vol(C) ≈ γ(H) is equivalent
to asking that they have similar Gaussian measure.

Proof. The Gaussian measure of H is

γ(H) = Φ(
√
n cos θ) = Φ(

√
n sinφ)

= Φ(
√
nφ−O(

√
nφ3))

= Φ(
√
nφ) +

∫ √nφ
√
nφ−O(

√
nφ3)

ϕ(x) dx

≤ Φ(
√
nφ) +O(

√
nφ3)

e−(nφ2−O(nφ4))/2

√
2π

.

We want to show that the second term is negligible compared to the first. Using the as-
sumption that φ = o(n−1/4),

= Φ(
√
nφ) +O(

√
nφ3)

e−nφ
2/2

√
2π

(1 + o(1)).
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We distinguish two cases. When φ ≥ 1/
√
n, by Proposition 3.1 we have

Φ(
√
nφ) = Ω

(
e−nφ

2/2

√
nφ

)
.

The ratio of the second term to the first is therefore

O
(
nφ4
)

= o(1).

In the second case, φ < 1/
√
n. The first term is at least Φ(1) = Ω(1), whereas the second

term is at most O(1/n). Put together, this shows γ(H) = Φ(
√
nφ)(1 + o(1)).

Now we turn to C. A simple formula for vol(C) is given in [Li11],

vol(C) =
1√
π

Γ(n
2
)

Γ(n−1
2

)

∫ θ

0

sinn−2 x dx

=

√
n√
2π

(1 + o(1))

∫ π/2

φ

cosn−2 x dx

Making the substitution x = y/
√
n,

=
1√
2π

(1 + o(1))

∫ √nπ/2
√
nφ

cosn−2(y/
√
n) dy.

The integrand is approximately cosn(y/
√
n) ≈ (1 − y2/2n)n ≈ e−y

2/2, so at least heuris-
tically we have the claim vol(C) ≈ Φ(

√
nφ). To make this argument rigorous, let T =

max(n0.2, n0.7φ) and break the integral into two pieces,

1√
2π

∫ √nπ/2
√
nφ

cosn−2(y/
√
n) dy =

1√
2π

∫ T

√
nφ

cosn−2(y/
√
n) dy

+
1√
2π

∫ √nπ/2
T

cosn−2(y/
√
n) dy.

The first piece can be Taylor expanded as the upper bound of integration is o(
√
n). The

integrand is

cosn−2

(
y√
n

)
=

(
1− y2

2n
+O

(
y4

n2

))n−2

=

(
1− y2

2n

)n(
1 +O

(
y4

n2

))n
· (1 + o(1))

Proposition A.1, in the appendix, shows that the first term is asymptotic to e−y2/2 and the
second term is 1 + o(1), with both using the assumption that y ≤ O(

√
nφ) = o(n1/4). The

first piece is therefore equal to

1 + o(1)√
2π

∫ T

√
nφ

e−y
2/2 dy.
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The second piece is exponentially smaller than the first. However, we leave this claim
unproven for a moment in order to show that the first piece is (1 + o(1))Φ(

√
nφ). That is,

we want to show that ∫ T

√
nφ

e−y
2/2 dy ≥ (1− o(1))

∫ ∞
√
nφ

e−y
2/2 dy.

The tail is upper bounded by Proposition 3.1,∫ ∞
T

e−y
2/2 dy ≤ e−T

2/2

T
.

On the other hand Proposition 3.1 gives us a lower bound on Φ(
√
nφ), at least in the case

when φ ≥ 1/
√
n,

Φ(
√
nφ) ≥ C

e−nφ
2/2

√
nφ

.

The exponent e−T 2/2 = O(e−n
1.4φ2/2) is exponentially smaller. If φ < 1/

√
n, then Φ(

√
nφ) =

Ω(1), whereas the tail is bounded by 1/T = O(n−0.2). In either case, the tail is o(Φ(
√
nφ))

as needed.

Now we return to bounding the second piece. We show that it’s negligible compared
to Φ(

√
nφ). Bounding the integrand by the left endpoint shows it’s at most

√
nπ
2
· cosn−2(T )

which as done above can be approximated using the Taylor expansion,

= (1 + o(1)) ·
√
nπ

2
· e−T 2/2.

In the case that φ ≥ 1/
√
n, this is O(e−n

1.4φ2), whereas by Proposition 3.1, Φ(
√
nφ) has

exponent e−nφ2 , and hence this term is exponentially smaller. In the case that φ < 1/
√
n,

this is O(
√
ne−n

0.4/2) whereas Φ(
√
nφ) = Ω(1). This shows that the second piece of the

integral is negligible, while the first is asymptotic to Φ(
√
nφ), which completes the proof of

the lemma.

Finally, we fill in the details of the proof of Theorem 7 using Theorem 8.

Proof. Say we have a collection of m caps {Ci} whose union covers Sn−1, and each has
angular radius θ and normalized volume δ with 2−o(

√
n) ≤ δ < 1

2
. Let vi be the pole of cap

Ci, and define the halfspaces

Hi = {x ∈ Rn | 〈x, vi〉 ≥
√
n cos θ}.

The intersection of Hi with the
√
n-sphere is exactly

√
nCi, and the assumption that the

{Ci} cover Sn−1 tells us that the Hi cover the
√
n-sphere. Apply Theorem 8 to the collection

of {Hi},

γ(Hi) ≥ Ω

(
n

m
√

log(1 + m
n

)

)
.
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We would like to now apply Lemma 3.1; to do so we need to bound θ given δ. By Proposi-
tion A.2, a halfspace of Gaussian volume δ has

Φ
−1

(δ) =
√

2 ln 1/δ + o(1) = o(n1/4).

Using Lemma 3.1, the spherical cap through this halfspace has measure δ(1 + o(1)) and
angle π

2
− o(n−1/4). Enlarging the angle by o(n−1/4) is enough to contain the spherical cap

of volume δ.

Now by Lemma 3.1, γ(Hi) is within a constant factor of δ, and therefore

δ ≥ Ω

(
n

m
√

log(1 + m
n

)

)
.

3.3 A Matching Bound for Theorem 5.

The lemmas established in this section can be used to convert the cap covering bounds of
Böröczky and Wintsche [BW03] to bounds for Theorem 5. We don’t make too much fuss
about the constants for covers and suffice to work with the simpler covering density bound
of 2n lnn.

Theorem 6. For every choice of 2−o(
√
n) < δ < 1

n2 , there is a parameter 1/δ ≤ m ≤ 2n lnn
δ

and unit vectors v1, . . . , vm ∈ Sn−1 such that, for any x ∈ Sn−1 there is a vi with

〈x, vi〉 ≥
√

2 ln m
n

n
·

(
1− o

(
1√

log m
n

))
.

Proof. Fix δ. Find a set of caps of m caps of volume δ with polar vectors vi that cover the
sphere, with

1 ≤ mδ ≤ 2n lnn.

Letting θ be the angular radius of the caps, for any x ∈ Sn−1 there is vi with 〈vi, x〉 ≥ cos θ.
The calculation performed in the proof of Theorem 7 showed that θ was in the correct range
for Lemma 3.1.

Φ(
√
n cos θ) = δ(1 + o(1))

cos θ =
1√
n

Φ
−1

(δ(1 + o(1)))

Taylor expand Φ
−1 via Proposition A.2, given in the appendix,

Φ
−1

(δ(1 + o(1))) =
√

2 ln 1/δ + o(1)

≥
√

2 ln
m

n
− 2 ln(2 lnn) + o(1)

21



=

√
2 ln

m

n
+ o(1).

Put together, we have

〈vi, x〉 ≥
√

2 ln m
n

n

(
1 + o

(
1√

log m
n

))
.

3.4 Generating Sphere Packings.

We verify the performance of Algorithm 2.1 for generating sphere packings,

Theorem 9. Let 16n ≤ m ≤ 2o(
√
n). There is a deterministic algorithm which runs in time

poly(m,n) that outputs m points v1, v2, . . . , vm ∈ Sn−1 such that

〈vi, vj〉 ≤
√

2 ln m
n

n
·
(

1 +O

(
1

log m
n

))
for all pairs i, j. Taking the maximal radius r such that spherical caps of radius r around

the vi are disjoint produces a packing with density Ω

(
n

2n
√

log m
n

)
.

The density of this packing density upper bound is related to the density of the covering
lower bound by a factor of 2n. This is (not directly due to, but essentially) because of the
well-known generic relationship between packing and covering: doubling the radius of a
maximal packing produces a covering, with density scaled by 2n. However, this generic
relationship is in general not tight.

Proof. The first part is immediate from Theorem 5. For the second part, let 2r be the
minimum distance between the vi. Taking a cap of radius 2r around each point covers Sn−1,

and the density of this covering was computed in Theorem 7 to be at least Ω

(
n√

log m
n

)
.

Halving the radius gives a disjoint set of caps of the desired density.

4 Komlós Problem in the Spherical Domain.

Seeing as the spherical domain sidesteps the rounding present in partial coloring, which
seems to have inherent flaws when trying to prove tight discrepancy results in the boolean
domain (see [BG17] for some discussion), it is natural to hope that the spherical versions of
some open problems from discrepancy theory are more tractable. In particular we can adapt
our Algorithm 2.1 to resolve a version of the Komlós problem in the spherical setting,
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Theorem 12. Let w1, . . . , wn ∈ Rn be vectors with ‖wi‖2 ≤ 1, and let W be the matrix with
the wi as columns. Then we can find a unit vector x ∈ Sn−1 such that

‖Wx‖∞ = O

(
1√
n

)
in time polynomial in n.

The idea is a rather general one taken from boolean discrepancy theory. A priori some
of the rows of W could have norm as large as

√
n. Even so, in the special case of the Komlós

conjecture where the rows of W are restricted to have norm O(1), the core of the problem
still seems to be captured; for many algorithms for discrepancy problems, the row norms are
assumed to be bounded without loss of generality. This holds for algorithms that iteratively
build a solution from small update vectors subject to linear number linear number γn (γ < 1)
of linear constraints. The bounds ‖w‖2 ≤ 1 ensure there are at most ε2n row vectors with
norm greater than 1/ε. Thus as long as γ+ ε2 < 1, the number of linear constraints we have
is significantly less than n, and there is still room to find an update vector orthogonal to
rows of large norm.

In fact, as pointed out by the anonymous reviewer, the above idea can be instantiated in
a black box manner using just the generic partial coloring lemma of Lovett and Meka,

Theorem 13 [LM15]. Let v1, . . . , vm ∈ Rn be vectors, x(0) ∈ [−1,+1]n be a starting point,
and let c1, . . . , cm ≥ 0 be thresholds so that

∑m
j=1 exp(−c2

j/16) ≤ n
32
. Let δ > 0 be a small

approximation parameter. Then there exists a poly(m,n, 1/δ)-time randomized algorithm
which with probability at least 0.1 finds a point x ∈ [−1,+1]n such that

(i)
∣∣〈vj, x− x(0)

〉∣∣ ≤ cj‖vj‖2 for all j ∈ [m],

(ii) |xi| ≥ 1− δ for at least n/2 indices i ∈ [n].

We now give the details for Theorem 12.

Proof. We will invoke Theorem 13. Let W be the given matrix, and let the vj be the rows
of W . Let B be the set of vj with norm at least ‖vj‖ ≥ 20. Set the starting point x(0) = 0
and δ = 0.5, and set the parameters

cj =

{
0 j ∈ B
50 j 6∈ B

We must check
∑

j exp(−c2
j/16) ≤ n

32
. Because of the unit norm constraints on the columns

of W , the set B isn’t that big. The sum
∑

j ‖vj‖2 is at most n, and hence at most n/400 of
the vj have ‖vj‖ ≥ 20. Thus we can bound∑

j

exp(−c2
j/16) =

∑
j∈B

exp(−c2
j/16) +

∑
j 6∈B

exp(−c2
j/16)

≤ n

400
+ n · exp(−502/16) ≤ n

32
.
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Invoking the theorem, we can algorithmically produce x. We will show x̂ = x
‖x‖ satisfies

our claim. Because at least half of the coordinates of x are +1 or −1, we have ‖x‖ = Ω(
√
n).

For rows in B, the inner product between x and vj is exactly zero, and hence these rows are
definitely O(1/

√
n). For rows outside of B, the norm of vj is O(1) and from the theorem we

have 〈x, vj〉 ≤ O(1) · ‖vj‖ = O(1). Therefore, the inner product with the normalized vector
x̂ is O (1/

√
n) as desired.

5 Hardness of Approximation.

In this section we show that the Spherical Discrepancy problem is APX-hard. Here is
the formal specification of the Spherical Discrepancy problem,

Spherical Discrepancy
Input: a collection of unit vectors v1, v2, . . . , vm ∈ Sn−1

Output: compute the minimum value of maxi 〈x, vi〉 for x ∈ Sn−1

We say that an algorithm is an α-approximation or α-approximates Spherical Discrep-
ancy if it outputs x ∈ Sn−1 which is within a multiplicative α factor of the best possible
x,

max
i
〈vi, x〉 ≤ α · min

x∈Sn−1
max
i
〈vi, x〉

We prove a constant factor hardness of distinguishing result for Spherical Discrep-
ancy,

Theorem 11. There is a constant C > 1 so that it is NP-hard to distinguish between
instances of Spherical Discrepancy with m = O(n) with value at most 1√

n
, and instances

with value at least C√
n
.

Corollary 1. For some constant C > 1, it is NP-hard to C-approximate Spherical Dis-
crepancy.

Previous work by Petković et al [PPL12] using a different approach showed that solving
Spherical Discrepancy exactly is NP-hard when the vi are not restricted to be unit
vectors.

A few words are in order about the notion of approximation algorithm. For boolean
and spherical discrepancy the notion of α-approximation is slightly orthogonal to the goals of
papers such as [Spe85, BDGL18]. This is because for many discrepancy problems, we don’t
even know the worst-case value of the optimum solution across the possible inputs,

max
v1,v2,...,vm

min
x∈Sn−1

max
i
〈xi, v〉 .

Theorems such as Spencer’s or the Komlós conjecture are attempts to prove (or, in the
case of an algorithm, algorithmically certify) an upper bound on the above quantity; however,
they often provide no guarantee of α-approximation because they do not relate the found
algorithmic solution to the value of an optimum solution for the input. In some ways this
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is the “interesting” challenge for discrepancy because the problem is much harder when the
algorithm is forced to make a guarantee that depends on the optimum solution: for example
it is NP-hard to distinguish boolean set systems that have discrepancy zero from those with
discrepancy Ω(

√
n) [CNN11]. We conjecture in Section 6 that for Spherical Discrepancy

the situation is similar and the true approximation factor is significantly worse than what is
proven here.

The reduction used to prove Theorem 11 is a gap-preserving gadget reduction from
Max NAE-E3-SAT. In the Max NAE-E3-SAT problem, which stands for Not-All-Equal
Exactly-3 SAT, we are given a collection of m clauses each of which involves exactly three
distinct literals. An assignment to the variables satisfies a clause if the assignments to all
literals are not all the same. The instances must also have the number of occurrences of
each variable bounded by some absolute constant B. An observation made by Charikar
et al [CGW05, Theorem 11] states that (even further restricting the SAT instance to be
monotone) there are constants γ < 1 and B so that it is NP-hard to distinguish an instance
which is satisfiable, from one in which at most γm clauses can be simultaneously satisfied.
Observe that the size of these instances is guaranteed to be linear, m ≤ Bn

3
= O(n), by

construction. Now we prove Theorem 11.

Proof. Let C1, . . . , Cm be a hard instance of Max NAE-E3-SAT. The dimension for our
Spherical Discrepancy instance will be n. Construct the instance as follows:

• For each Ci take its {0,±1} indicator vector 1Ci
for whether a variable occurs in the

clause and whether the variable is negated in the clause. Add the two vectors 1√
3
1Ci

and −1√
3
1Ci

.

• Add the vectors ei and −ei for i = 1, 2, . . . , n.

It is clear that all vectors are unit vectors and the number of vectors is O(n). If the Max
NAE-E3-SAT instance is satisfiable, let x be the normalized {±1}-coloring. On vectors
of the first type, the NAE constraint implies |〈x, vi〉| = 1√

3n
, whereas on the second type

|〈x, vi〉| = 1√
n
, so the value of the new instance is 1√

n
.

On the other hand, assume the Max NAE-E3-SAT instance is far from satisfiable,
and let x be a unit vector. We must show the value of x is at least C√

n
for some constant

C > 1. On boolean coordinates x ∈ { 1√
n
, −1√

n
}n, since there is at least one clause which is not

satisfied by the corresponding assignment, the value of x is exactly
√

3
n
, which is larger than

1√
n
, hence the value is large here. But as x moves away from the set { 1√

n
, −1√

n
}n, the value is

forced to be large because of the vectors of the second type. We convert this intuition to a
proof.

Choose C = min

(√
B− 9

16
(1−γ)

B−(1−γ)
, 3
√

3
4

)
. If ‖x‖∞ ≥ C√

n
, the value of this solution will be

at least C√
n
via the vectors of the second type, so assume that ‖x‖∞ < C√

n
.

Let S = {i : xi <
0.75√
n
}, a set we call the “small” coordinates of x, and let α = |S| /n. Let

x̃ denote the coloring obtained by taking the sign of each coordinate of x (assign arbitrarily

25



for zero). There are at least 1 − γ fraction of clauses not satisfied by x̃. We claim that for
some clause Ci not satisfied by x̃, none of its three variables are in S. This will finish the
proof: because the coordinates of x must have the same signs in Ci, and they are all big,
the inner product with 1√

3
1Ci

or −1√
3
1Ci

must be least 3 · .75√
3n
≥ C√

n
. Suppose then that every

unsatisfied clause by x̃ has a variable from S. Because of the bound B on the maximum
number of occurrences of any variable, α ≥ 1−γ

B
. Outside of S we use the bound on ‖x‖∞ to

bound the big coordinates,
n∑
i=1

x2
i <

(
C√
n

)2

(1− α) · n+

(
0.75√
n

)2

α · n

≤ C2

(
1− 1− γ

B

)
+

9

16
· 1− γ

B

The choice of C ≤
√

B− 9
16

(1−γ)

B−(1−γ)
shows the right-hand side is at most 1, contradicting that∑

i x
2
i = 1.

6 Further Questions.

The current work implements an algorithmic approach to covering problems in geometry,
and there are several questions left open for future investigation.

• Perhaps most generally, the idea to generalize {−1,+1}n to the
√
n-radius sphere may

be interesting to consider for other combinatorial problems besides discrepancy. We
would be interested in seeing concrete realizations of the following algorithmic strategy:

(1) Relax an optimization problem over {−1,+1}n to the
√
n-radius sphere.

(2) Solve the relaxed problem.

(3) Round the
√
n-radius sphere to {−1,+1}n.

For example, Trevisan [Tre12] provides an interesting algorithm for MaxCut that ex-
actly matches this framework. Indeed, spectral relaxations such as Trevisan’s can be
interpreted in this perspective. However, in general, unlike spectral algorithms, in our
framework it is not immediate that the relaxed problem in step (2) can be perfectly
solved! Spectral relaxation corresponds to objective functions of degree at most 2
which can be perfectly solved, but polynomial optimization of higher degree over the
sphere is NP-hard in general (and even difficult to approximate [BGL+17]). Therefore
we find it particularly interesting whether any problems which are naturally degree-4
or higher (or, as in the case of discrepancy, are not polynomials) can be attacked using
this framework. The hypersphere also provides more structure for rounding than e.g.
a Sum-of-Squares relaxation.

• If we were able to improve the error bound in Algorithm 2.1, we could remove the
logarithmic factor in Theorem 7. The conjectural “right” error bound for proving a
linear lower bound can be computed from Proposition A.2 with δ = n

m
,
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Conjecture 4. There is an efficient algorithm that improves the bound in Theorem 5
to

〈vi, x〉 ≤
√

2 ln m
n

n

(
1−

ln ln m
n

4 ln m
n

+O

(
1

ln m
n

))
.

• However, even if we are able to remove the log factor, it is unclear if our techniques
are able to prove the bona fide simplex bound τn,θ, instead of the bound Ω(n), which
is weaker by a constant factor. It seems possible that the essence of Algorithm 2.1
could be extracted into a continuous-time walk (either deterministic or random) which
avoids the lossy algorithmic analysis we went through.
Question 1. Can Algorithm 2.1 be refined to improve the constant in the lower bound
and completely prove Conjecture 2?

• We should point out some fundamental geometric questions about τn,δ that, to the best
of the authors’ knowledge, are open. The formal definition of τn,δ is as follows. Let T
be a regular spherical simplex inscribed in a spherical cap of volume δ. Let Ci be caps
of volume δ around vertex i of T . Then

τn,δ
def
=

∑n
i=1 vol(Ci ∩ T )

vol(T )
=
n · vol(C1 ∩ T )

vol(T )
.

Rogers [Rog58] computed that for τn = limδ→0 τn,δ the Euclidean covering density,
τn ∼ n

e
√
e
. It is natural to conjecture that the densities are always linear,

Conjecture 5. τn,δ ≥ c · n for some positive constant c.

The conjecture is verified in the “nearly Euclidean" regime by Böröczky andWintsche [BW03,
Example 6.3]. Intuitively, as the simplex becomes more curved, the relative volume
near the center of the simplex increases. The caps C contain approximately half of the
local mass near the center, and so we might expect the cap to contain more and more
of the simplex as it becomes more curved, up to the limit where T is a hemisphere and
each cap equals half of the simplex, τn,1/2 = n/2. Based on this intuition we conjecture
monotonicity of τn,δ,
Conjecture 6. For every n, as a function of the dihedral angle θ ∈ [arccos(1/(n −
1)), π] the function τn,θ is monotonically increasing.

Here we have changed notation, so that θ is the angle between two planes defining the
simplex, and we have extended the conjecture to include hyperbolic space (the mini-
mum dihedral angle in n-dimensional hyperbolic space is arccos(1/(n − 1)), achieved
by the ideal regular simplex).

One must be careful, however, because the related expression for the simplicial pack-
ing density is a decreasing function of θ (for sufficiently large n), as proven by Mar-
shall [Mar99] and Kellerhals [Kel98] (though we could not verify the proof outside of
hyperbolic space). The proof is analytic, and Kellerhals poses as an open problem to
find a geometric proof, which we also pose as a challenge for Conjectures 5 and 6.

• The section on sphere covering presented Conjecture 3,
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Conjecture 3. If m halfspaces of Gaussian measure δ < 1
2
are a 1/2-cover of a

standard n-dimensional Gaussian random variable, then

m · δ ≥ Ω (n) .

It may be possible to adapt the boolean discrepancy “sample and project” algorithm
of Rothvoss [Rot17] or Eldan and Singh [ES18] to prove this lower bound.

• We briefly pointed out in Theorem 9 that Algorithm 2.1 can also be used to generate
a set of points in Sn−1 that are relatively spaced out. Therefore we ask,
Question 2. Can we use Algorithm 2.1 to deterministically build smaller hitting sets
than Rabani-Shpilka [RS09]? For every δ ≥ 2−o(

√
n), can we deterministically generate

a sphere cover using spherical caps of volume δ with density Õ(n) in time poly(n, 1/δ)?

The problem with using Algorithm 2.1 in its current form is that Theorem 5 is a
“packing property”; we have no guarantee that m points will cover the whole sphere.

• Algorithm 2.1 minimizes the max of a collection of linear functions on the sphere. Can
we adapt it to minimize functions that are “slightly nonlinear”, or sets with boundaries
that are slightly nonlinear? An interesting question arises if we consider sets with a
diameter bound.

Fix a parameter θ ∈ [0, π], and define a distance graph in spherical space Sn≥θ with
vertex set Sn and edge set

E(Sn≥θ)
def
= {(x, y) | 〈x, y〉 ≥ θ}.

Independent sets in Sn≥θ are sets with diameter at most θ, and therefore a cover of Sn
by spherical caps with diameter θ yields a finite coloring of Sn≥θ. It is hopeful that this
is the best possible up to a constant,
Conjecture 7. For every θ, χ(Sn≥θ) ≥ Ω(Bn,θ), where Bn,θ equals the minimum number
of spheres of radius θ needed to cover Sn.

• The basic problem of Spherical Discrepancy has constant factor hardness of ap-
proximation as we showed in Section 5 but it seems likely that the problem has a much
worse approximation factor.
Conjecture 8. For every 16n ≤ m ≤ 2

√
n, it is NP-hard to approximate Spherical

Discrepancy on m unit vectors within a factor of Ω
(√

n ln m
n

)
.

Evidence for this conjecture comes from the boolean regime, where despite the fact that
every set system on O(n) sets has discrepancy O(

√
n), it is NP-hard to distinguish set

systems with zero discrepancy from those with discrepancy Ω(
√
n) [CNN11]. In the

spherical domain, on the other hand, given a set of unit vectors it is easy to check if
there is a discrepancy zero vector i.e. a vector orthogonal to the entire set. It is not
clear how the Spherical Discrepancy problem behaves when we promise a lower
bound on the solution value such as 1

n
in order to avoid issues of this sort.
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Appendix A

Fact 2.1. For any 0 ≤ x ≤ 1,

ex ≤ 1 + x+
x2

2
+
x3

2
.

Proof.

ex = 1 + x+
x2

2
+
∞∑
k=3

xk

k!

≤ 1 + x+
x2

2
+ x3

(
∞∑
k=3

1

k!

)

= 1 + x+
x2

2
+ x3 (e− 2.5)

≤ 1 + x+
x2

2
+
x3

2
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Fact 3.1. Let ϕ and Φ denote the PDF and tail probability respectively of the standard
normal distribution,

ϕ(t) =
1√
2π

exp(−t2/2) Φ(t) =

∫ ∞
t

ϕ(s) ds

There is a constant C so that for t ≥ 1, C ϕ(t)
t
≤ Φ(t) ≤ ϕ(t)

t
.

Proof.

Φ(t) =
1

2π

∫ ∞
t

e−x
2/2 dx = ϕ(t)

∫ ∞
0

e−x
2/2 · e−xt dx

For the upper bound,

Φ(t) ≤ ϕ(t)

∫ ∞
0

e−xt dx =
ϕ(t)

t
.

For the lower bound, since ϕ decreases so quickly the integral is well-approximated by just
the first unit interval,

Φ(t) ≥ ϕ(t)

∫ 1

0

e−1/2e−xt dx =
ϕ(t)

t
· e−1/2(1− e−t).

Assuming that t ≥ 1 ensures C = e−1/2(1− 1/e) works.

Fact A.1. For x = o(
√
n), (

1 +
x

n

)n
∼ ex

For x = Θ(
√
n), (

1 +
x

n

)n
= Θ(ex)

For x = ω(
√
n), (

1 +
x

n

)n
= ω(ex)

Proof. (
1 +

x

n

)n
= exp

(
ln
((

1 +
x

n

)n))
= exp

(
n · ln

(
1 +

x

n

))
= exp

(
n ·
(
x

n
+ Θ

(
x2

n2

)))
= ex · exp(Θ(x2/n))
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Fact A.2. As δ → 0,

Φ
−1

(δ) =
√

2 ln 1/δ − ln 2
√
π√

2 ln 1/δ

− ln ln 1/δ

2
√

2 ln 1/δ
+ o

(
1√

ln 1/δ

)

Proof. The complementary error function erfc is related to Φ via erfc(z) = 2Φ(
√

2z). Blair
et al [BEJ76] show an asymptotic formula for the inverse complementary error function,

erfc−1(δ)2 = ln 1/δ − ln
√
π − 1

2
ln(ln 1/δ − ln

√
π)

+ o(1)

Φ
−1

(δ)2 = 2 ln 1/δ − 2 ln 2
√
π − ln(ln 1/δ − ln 2

√
π)

+ o(1)

= 2 ln 1/δ − 2 ln 2
√
π − ln ln 1/δ + o(1).

Taking a square root,

=
√

2 ln 1/δ

(
1− 2 ln 2

√
π + ln ln 1/δ + o(1)

2 ln 1/δ

)1/2

=
√

2 ln 1/δ

(
1− 2 ln 2

√
π + ln ln 1/δ

4 ln 1/δ
+ o

(
1

ln 1/δ

))
=
√

2 ln 1/δ − ln 2
√
π√

2 ln 1/δ
− ln ln 1/δ

2
√

2 ln 1/δ

+ o

(
1√

ln 1/δ

)
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