Sum-of-Squares for Unique Games

Chris Jones University of Chicago Advisor: Aaron Potechin Committee: László Babai, Aaron Potechin, Madhur Tulsiani

Unique Games

Unique Games (UG) problem: Fix constant q. Given (G, Π) where G is a directed graph, $\Pi = (\pi_e)_{e \in E}$ is a permutation of [q] for each edge, maximize over $x_u \in [q]$ $\mathbb{E}_{e=(u,v)\in E} \mathbb{1}[x_v = \pi_e(x_u)]$

Unique Games Conjecture (UGC): For all ε , s > 0, there is q sufficiently large such that it is NP-hard to distinguish between: (G, Π) has value $\ge 1-\varepsilon$ or value \le s.

Lemma. WLOG constraints are *affine*, undirected, and the graph is d-regular.

"Solve UG" = when the input is (1-ε) satisfiable, find a solution with value Ω_ε(1)
 Drop the parameter s from here on out and assume we are given (1-ε) satisfiable (G, Π), where ε is a tiny constant

Sum-of-Squares

Our most effective algorithm for Unique Games is the Sum-of-Squares algorithm

Sum-of-Squares can be used to maximize a polynomial system Sum-of-Squares (SoS_D) algorithm: given "degree" D, search for a pseudoexpectation \tilde{E} which maximizes \tilde{E} [objective].

 $\tilde{\mathbf{E}}$ looks like a real expectation over a distribution on $\mathbb{R}^{\#\text{variables}}$ with respect to:

(1) degree D/2 local reasoning
(2) Ẽ[p(X)²] ≥ 0 for all degree ≤D/2 polynomials p

 $\tilde{\mathbf{P}}\mathbf{r}$ denotes the local probability distribution, e.g. $\tilde{\mathbf{P}}\mathbf{r}[X_i = a]$

Sum-of-Squares for Unique Games

Given (G, Π) where G is a directed graph, $\Pi = (c_e)_{e \in E}$ is an affine shift for each edge, maximize over $x_u \in [q]$ the fraction of satisfied edges $\mathbb{E}_{e=(u,v)\in E} \mathbb{1}[x_v = x_u + c_e]$.

Variables:
$$X_{ua}$$
 for each $u \in V$, $a \in [q]$
Constraints: $X_{ua}^{2} = X_{ua}$
 $\sum_{a} X_{ua} = 1$
Objective: $\mathbb{E}_{e=(u,v)\in E} \sum_{a} X_{ua} X_{v,a+c}$

X_{ua} indicates that u is assigned a

Boolean variables, X_{11a} in {0,1}

Exactly one label per vertex

Run SoS_D to produce \tilde{E} for the above system. \tilde{E} is a *fake* distribution of solutions, which has pseudo-expected value at least (1- ϵ).

Our goal is to design a rounding algorithm to "sample" from \tilde{E} a *real* solution with value $\Omega_{\epsilon}(1)$

How does SoS perform on UG?

Let (G, Π) be a UG instance with value at least (1- ϵ).

Theorem [BRS'11]. If G has threshold rank r, then rounding SoS_{O(r2)} solves UG

Theorem [BRS'11]. For general G, rounding $SoS_{nO(\epsilon)}$ solves UG

Theorem [BBKSS'21]. If G is a D-certifiable small set expander, then rounding $SoS_{O(D)}$ solves UG

Theorem [BBKSS'21]. If G is the Johnson graph, then rounding SoS_{O(1)} solves UG

Open: does rounding SoS₄ solve UG?

I. Rounding low threshold rank

Theorem [BRS'11]. If G has threshold rank r, then rounding SoS_{O(r2)} solves UG

Threshold Rank

Given a d-regular graph G and a set of vertices S ($|S| \le n/2$), the expansion of S is $\Phi_G(S) = E(S, V \setminus S) / d \le |S| = Pr[1-step walk leaves S]$

The spectrum of G are the eigenvalues of the normalized adjacency matrix A/d The spectrum is a subset of [-1, +1] of size n. Recall that +1 is always an eigenvalue.

The threshold rank rank_T(G) is the number of eigenvalues bigger than τ We will always use constant τ, such as τ = 1-poly(ε)

Threshold Rank

+1

All dense graphs have low threshold rank:

Lemma. Any d-regular graph G with d = pn has rank₁(G) $\leq p/T^2 = O(1)$

Proof. $\sum_{i} \lambda_{i}^{2} = tr((A/d)^{2}) = \sum_{v} Pr[2-step walk returns to v] = n/d = O(1)$. Therefore at most O(1) eigenvalues are bigger than T.

Correlation Rounding on Low Threshold Rank Graphs

Theorem [BRS'11]. If G has $(1-\epsilon^5)$ -threshold rank r, then rounding SoS_{O(r2)} solves UG

Idea: we wish that one of these two rounding schemes worked: for each v, sample v independently from its local distribution Edges unsatisfied! for each e = (u,v), sample (u,v) according to its local distribution Not consistent! Key observation: in a low threshold rank graph, after conditioning on a small number of randomly selected vertices, these become close (in total variation distance)!

We call this procedure "condition and round"

□ Formally, for a random set S of size O(r^{2.}), sample an assignment X_S from the local distribution on S, then sample the assignment to u from the conditioned local distribution **P̃r**[X_u | X_S]. These distributions exist provided the SoS degree is at least |S|+1

1. Low threshold rank

Correlation Rounding on Low Threshold Rank Graphs

Theorem [BRS'11]. If G has $(1-\epsilon^5)$ -threshold rank r, then rounding SoS_{O(r2)} solves UG

Proof. We prove that condition+round on O(r²) random vertices works

Theorem [Raghavendra-Tan '11]. Given any boolean-valued random variables $X_1, ..., X_n$ there is $S \subseteq [n], |S| \le O(r^2)$ such that $\mathbb{E}_{i, j \in [n]}[TV(X_i, X_j) | X_S] \le 1/r$

Theorem. If $\mathbb{E}_{(i,j) \in E} [TV(X_i, X_j)] \ge 1-2\varepsilon$, then $\mathbb{E}_{i,j \in V} [TV(X_i, X_j)] \ge poly(\varepsilon)/rank_{1-poly(\varepsilon)}(G)$

After conditioning, we may conclude that $\mathbb{E}_{(i,j) \in E} [TV(X_i, X_j)] \le 1-2\epsilon$. Looking at the event "edge (i, j) is satisfied", we have:

 $\mathbb{E}_{\text{round vertices independently}} \mathbb{E}_{(i,j) \in E} \text{value} \geq \mathbb{E}_{\text{round edges independently}} \mathbb{E}_{(i,j) \in E} \text{value} - (1-2\varepsilon_{f}) \geq 1$

II. General graphs in subexponential time

Theorem [BRS'11]. If G has threshold rank r, then rounding SoS_{O(r2)} solves UG

Theorem [BRS'11]. For general G, rounding $SoS_{nO(\epsilon)}$ solves UG

What about high threshold rank?

If you let me partition the graph by cutting O₂(1) fraction of edges, what can I do?

Lemma [ABS'10]. Any graph G can be partitioned into pieces V_i with rank_{1- $\epsilon^5}(G[V_i]) \le n^{100\epsilon}$ by cutting at most O($\epsilon \log(1/\epsilon)$) fraction of edges</sub>

Overall algorithm: run SoS_{n100ε} on the entire graph, which gives a feasible SoS_{n100ε} solution on each subgraph. Condition+round on each subgraph.

Graph Partitioning Lemma

If you let me partition the graph by cutting $O_{c}(1)$ fraction of edges, what can I do?

Lemma [Arora-Barak-Steurer '10]. Any graph G can be partitioned into pieces V_i with rank_{1- ϵ 5}(G[V_i]) $\leq n^{100\epsilon}$ by cutting at most O($\epsilon \log(1/\epsilon)$) fraction of edges

Lemma [folklore]. Any graph G can be partitioned into pieces V_i with $\Phi_G(V_i) \le \varphi$ by cutting at most O(φ log n) fraction of edges

Proof idea: If G itself is a φ -expander, great! Otherwise there is a non-expanding set S, $|S| \le n/2$. Partition G into S and V\S and recurse.

Graph Partitioning Lemma

Lemma [Arora-Barak-Steurer '10]. Any graph G can be partitioned into pieces V_i with rank_{1- $\epsilon_5}(G[V_i]) \le n^{100\epsilon}$ by cutting at most O($\epsilon \log(1/\epsilon)$) fraction of edges</sub>

Proof: Use the following lemma.

Lemma [ABS'10]. For a graph G with rank $_{1-\epsilon^5}(G[V_i]) > n^{100\epsilon}$, we can find a subset S with $|S| \le n^{1-\epsilon}$ and $\Phi_G(S) \le \epsilon^2$

Recursive apply the lemma to bad pieces or until $|V_i| \le n^{\varepsilon}$

After k subdivisions, piece has size $n^{(1-\epsilon)k}$. Therefore each piece is subdivided at most $k = O(\log(1/\epsilon)/\epsilon)$ times. Total fraction of edges cut = $\epsilon^2 k = O(\epsilon \log(1/\epsilon))$

III. Certified Small Set Expanders

Theorem [BBKSS'21]. If G is a D-certifiable small set expander, then rounding $SoS_{O(D)}$ solves UG

Small Set Expansion

G is a (δ, η) -small set expander (SSE) if for all $|S| \le \delta n$, $\Phi_G(S) \ge \eta$

 $\Box \delta$, η are fixed small constants while val(G) \ge 1- ϵ where $\epsilon \ll \delta$, η

Idea for rounding SoS on a small set expander:

Recall that **E** gives access to a claimed distribution of high-value solutions on G. Suppose we sample *two independent* high-value solutions X, X'.

We claim that in a SSE these solutions will have significant overlap.

Define the (random vbl) shift partition by partitioning V on $X_v - X'_v \in [q]$.

Lemma. Edges between blocks of the shift partition are violated in either X or X'

Since X, X' have value 1-ε, at most 2ε fraction of edges cross the partition. Therefore, at least one block of the shift partition must be non-expanding. In a SSE, this block must be large, |block| > δn.

Since edges across the shift partition are violated, but X,X' have high value, at least one block of the shift partition is non-expanding

Rounding SSEs

Takeaway: in a (δ, η) -SSE, there is a block of the shift partition with size $\geq \delta n$

This implies the following rounding algorithm succeeds: condition on one random vertex, then round the remaining vertices independently

 \Box Use Z_u to denote the output assignment, while X_u and X'_u denote the variables of the SoS program \Box Set $Z_u = 0$, then sample Z_v independently from $\tilde{\mathbf{Pr}}_X[X_v = a \mid X_u = 0]$

Lemma. $\mathbb{E}_{\text{rounding } Z}[\text{value}(Z)] \ge \delta^2 - \epsilon = \Omega(1)$

Lemma. For symmetrized \tilde{E} , the conditional dist $X_v | X_u = 0$ is the same as $X_v - X_u$

Rounding SSEs

Lemma. $\mathbb{E}_{\operatorname{rounding } Z}[\operatorname{value}(Z)] \geq \delta^2 - \varepsilon$

Proof:

$$\mathbb{E}_{Z}[value(Z)] = \mathbb{E}_{u} \mathbb{E}_{(v,w) \in E} \operatorname{Pr}_{Z \mid Zu = 0}[Z_{w} - Z_{v} = c_{vw}]$$

$$= \mathbb{E}_{u} \mathbb{E}_{(v,w) \in E} \widetilde{\operatorname{Pr}}_{X, X'}[X_{w} - X'_{v} = c_{vw} \mid X_{u} = X'_{u} = 0]$$

$$= \mathbb{E}_{u} \mathbb{E}_{(v,w) \in E} \widetilde{\operatorname{Pr}}_{X, X'}[X_{w} - X_{u} - X'_{v} + X'_{u} = c_{vw}]$$

If u, v are in the same block of the shift partition of X and X', and v,w is a satisfied edge of X, then this event will occur. Hence,

 $\geq \mathbb{E}_{u} \mathbb{E}_{(v,w) \in E} \tilde{\mathbf{P}}\mathbf{r}_{X,X'}[u,v \text{ in same block of shift partition, (v,w) is satisfied in X]}$

By a union bound,

 $\geq 1 - \mathbb{E}_{u,v} \tilde{\mathbf{P}} \mathbf{r}_{X,X'}[u,v \text{ not in same block of shift partition}] - \mathbb{E}_{v,w} \tilde{\mathbf{P}} \mathbf{r}_{X}[(v,w) \text{ unsat in } X] \\\geq 1 - (1 - \delta^{2}) - \varepsilon = \delta^{2} - \varepsilon$

SoS-izing Rounding SSEs

Lemma. If G is a D-certifiable (δ, η) -SSE, then SoS_D satisfies $\mathbb{E}_{u,v} \tilde{\mathbf{P}} \mathbf{r}_{X,X'}[u,v \text{ in same block of shift partition}] \ge \delta^2$

[Simplified] We say that a (δ , η)-SSE G is D-certifiable if there is a degree-D SoS proof of

$$X_v^2 = X_v \implies \mathbb{E}_{(v,w) \in E} X_v(1-X_w) \ge \eta \mathbb{E}_v X_v + O.1(\mathbb{E}_v X_v)(\delta - \mathbb{E}_v X_v)$$

Pr[edge crosses S] ≥ η Pr[edge starts in S] + c (|S|/n) (δ - |S|/n)

Proof sketch. It suffices to show that $\tilde{\mathbf{E}}_{X,X'}$ |block a|/n $\geq \delta$ for some a. Write the SSE SoS proof for the block indicators $\mathbf{E}_{va} = 1[X_v - X'_v = a]$. Apply $\tilde{\mathbf{E}}$ to both sides of the proof. If $\tilde{\mathbf{E}}$ |block a|/n $< \delta$ for all a, then going through the argument that edges across the shift partition violate X or X', we conclude that the value of $\tilde{\mathbf{E}}$ is at most 1- $\eta \ll 1-\varepsilon$, a contradiction.

IV. Johnson graph

Theorem [BBKSS'21]. If G is the Johnson graph, then rounding SoS_{O(1)} solves UG

Johnson Graph

The (n, ℓ , α) Johnson graph has vertices ([n] choose ℓ) and edges at intersection size (1- α) ℓ $\Box \ell, \alpha$ are constants and $\alpha \in [0,1]$ is the "noise parameter"

Slice of the hypercube {-1, +1}ⁿ

The Johnson graph is not SSE. There are n+1 eigenspaces. Non-exp'ing sets are subcubes \Box For T \subseteq [n], the subcube for T (also known as link) is C = {S : S \supseteq T}

(n, α) Noisy Hypercube on {-1, +1}ⁿ r-restricted subcube = {x : x₁ = x₂ = ... = x_r = 1} Expansion \approx 1-(1- α)^r Fractional volume = 1/2^r (n, ℓ , α) Johnson graph r-restricted subcube = {x : x₁ = x₂ = ... = x_r = 1} Expansion ≈ 1-(1- α)^r Fractional volume ≈ 1/n^r

Rounding the Johnson Graph

If we sample two high-value solutions, the shift partition must have a non-expanding set, but it's not necessarily large anymore

Idea: apply condition+round on *just this set*, fix those vertices, and repeat **Ĕ** is only changed on edges incident to the non-expanding set If the value of **E** changes, *should* be able to satisfy some incident edges Since the set is non-expanding, C&R satisfies nontrivial fraction of incident edges

Several pieces of the analysis are specific to the Johnson graph

Proof that shift partition is correlated with a subcube requires degree O(1) SoS proof
 How to find the non-expanding subcube? Brute force search over all subcubes in poly(n) time
 Need that non-expanding sets chosen in the future have small overlap with previous ones

Rounding the Johnson Graph

Formal rounding algorithm (for a carefully chosen parameter δ):

while **Ε̃** has value at least 1 - 2ε:

Find a non-expanding subcube C such that "condition+round value" $\geq \delta$ Perform condition+round on C

Rerandomize
$$\tilde{E}$$
 on C: $\tilde{E}[X] \leftarrow 1/q^{|C|} \sum_{\sigma \in [q]^C} \tilde{E}[\prod_{v \in C} X_{v,\sigma(v)} X]$

Set remaining values arbitrarily

Lemma. There is a subcube with condition+round value $\geq \delta$

Lemma. If the value decreases by v, at least $\Omega(v)$ fraction of edges become sat

Conclusion and Open Problems

UG is easy on: low threshold rank, certified SSEs, graphs with small number of distinct large eigenvalues/simple non-expanding sets **UG is unknown on:** graphs with less structured spectra

Solve UG on the hypercube graph Construction of a non-SoS-certifiable SSE Other graph decompositions cutting ε fraction of edges? Smarter ways to round SoS? Counting Unique Games vs #BIS

Correlation Rounding on Low Threshold Rank Graphs

Define $TV(X_u, X_v) = \frac{1}{2} \sum_{a,b \in [q]} |Pr[X_u=a, X_v=b] - Pr[X_u=a]Pr[X_v=b]|$ Conditioning reduces the average pairwise correlation of the variables:

Theorem [Raghavendra-Tan '11]. For all r and all boolean-valued random variables X₁, ..., X_n there is t ≤ O(r²) such that $\mathbb{E}_{|S|=t}\mathbb{E}_{i, j \in [n]}$ [TV(X_i, X_j) | X_S] ≤ 1/r

Proof. Claim: there is $t \le r$ such that $\mathbb{E}_{|S|=t}\mathbb{E}_{i, j \in [n]}[I(X_i; X_j | X_S)] \le 1/r$

$$\mathbf{I}(\mathsf{X};\mathsf{Y}) = \mathsf{H}(\mathsf{X}) - \mathsf{H}(\mathsf{X}|\mathsf{Y})$$

 $\sum_{t=0}^{r-1} \mathbb{E}_{|S|=t} \mathbb{E}_{i,j\in[n]} [I(X_i; X_j | X_S)] = \mathbb{E}_{i\in[n]} [H(X_i)] - \mathbb{E}_{|R|=r} \mathbb{E}_{i\in[n]} [H(X_i | X_R)] \le 1$

Finally, use TV(Xi, Xj) $\leq O(\sqrt{I(Xi; Xj)})$ and Jensen's inequality.

Theorem [Jain-Koehler-Risteski '18]. Cannot improve O(r²) to o(r²): Sherrington-Kirkpatrick model

Local to Global Correlations

In an expander or low threshold rank graph, local correlation implies global correlation

Theorem. If $\mathbb{E}_{i \in V} ||v_i||^2 = 1$ and $\mathbb{E}_{(i,j) \in E} [\langle v_i, v_j \rangle] \ge 1-\varepsilon$, then $\mathbb{E}_{i,j \in V} [\langle v_i, v_j \rangle^2] \ge 1/\operatorname{rank}_{1-2\varepsilon}(G)$

Proof sketch. For simplicity, assume v_i are scalar-valued (one-dimensional). Consider the spectral sample $\lambda_e \sim v$ by taking λ_e with probability $\langle v, b_e \rangle^2$.

Local correlation: Global correlation: Using Cauchy-Schwarz,

$$\mathbb{E}_{(i,j)\in E} \mathbf{v}_{i}\mathbf{v}_{j} = \mathbf{v}^{\mathsf{T}}(\mathsf{A}/\mathsf{d})\mathbf{v} / \mathbf{n} = \mathbb{E}_{\lambda e^{-v}}[\lambda_{e^{-v}}]$$
$$\mathbb{E}_{i,j\in V} (\mathbf{v}_{i}\mathbf{v}_{j})^{2} \ge ||\mathbf{p}(\lambda_{e})||_{2}^{2}$$

 $\Pr_{\lambda e \sim v}[\lambda_e \ge 1-2\varepsilon] \le \operatorname{rank}_{1-2\varepsilon}(G) ||p(\lambda_e)||_2^2$ Compare this with $\mathbb{E}[\lambda_e]$ using the inequality below, then rearrange,

$$\mathbb{E}_{\lambda e^{-v}}[\lambda_e] \leq \Pr_{\lambda e^{-v}}[\lambda_e \geq 1-2\varepsilon] + (1-2\varepsilon)(1-\Pr_{\lambda e^{-v}}[\lambda_e \geq 1-2\varepsilon])$$
1. Low threshold rank

Local to Global Correlations

Passing to TV...

Theorem. If $\mathbb{E}_{(i,j) \in E} [TV(X_i, X_j)] \ge \epsilon$, then $\mathbb{E}_{i,j \in V} [TV(X_i, X_j)] \ge poly(\epsilon)/rank_{1-poly(\epsilon)}(G)$

Proof sketch. Let v_{ia} = w_{ia}+c_{ia}1 be the SDP vectors.
We have TV(Xi, Xj) = sum_{a,b} |<w_{ia}, w_{jb}>|.
Construct vi such that <vi, vj> = poly(TV(Xi, Xj)) and apply the Lemma on v_i.

Specifically, let vi = sum_a w_{ia}^{otimes 2} / ||w_ia||