Sum-of-Squares for Unique Games

$$
\widetilde{\mathbb{E}}\left[f^{2}\right] \geq 0
$$

Chris Jones
University of Chicago
Advisor: Aaron Potechin
Committee: László Babai, Aaron Potechin, Madhur Tulsiani

Unique Games

Unique Games (UG) problem: Fix constant q. Given ($\mathrm{G}, ~ П$) where G is a directed graph, $\Pi=\left(\pi_{\mathrm{e}}\right)_{\mathrm{e} \in \mathrm{E}}$ is a permutation of $[q]$ for each edge,

$$
\text { maximize over } x_{u} \in[q] \quad \mathbb{E}_{e=(u, v) \in E} 1\left[x_{v}=\pi_{e}\left(x_{u}\right)\right]
$$

Unique Games Conjecture (UGC): For all $\varepsilon, s>0$, there is q sufficiently large such that it is NP-hard to distinguish between: $(G, \Pi$) has value $\geq 1-\varepsilon$ or value $\leq s$.

Lemma. WLOG constraints are affine, undirected, and the graph is d-regular.
"Solve UG" = when the input is $(1-\varepsilon)$ satisfiable, find a solution with value $\Omega_{\varepsilon}(1)$
\square Drop the parameter s from here on out and assume we are given $(1-\varepsilon)$ satisfiable (G, Π), where ε is a tiny constant

Sum-of-Squares

Our most effective algorithm for Unique Games is the Sum-of-Squares algorithm
Sum-of-Squares can be used to maximize a polynomial system Sum-of-Squares (SoS $_{\mathrm{D}}$) algorithm: given "degree" D, search for a pseudoexpectation Ẽ which maximizes Ë[objective].
\tilde{E} looks like a real expectation over a distribution on $\mathbb{R}^{\# v a r a b l e s}$ with respect to:
(1) degree $D / 2$ local reasoning
(2) $\tilde{E}\left[p(X)^{2}\right] \geq 0$ for all degree $\leq D / 2$ polynomials p
$\tilde{\operatorname{Pr}}$ denotes the local probability distribution, e.g. $\tilde{\operatorname{Pr}}\left[\mathrm{X}_{\mathrm{i}}=\mathrm{a}\right]$

Sum-of-Squares for Unique Games

Given (G, Π) where G is a directed graph, $\Pi=\left(c_{e}\right)_{e \in E}$ is an affine shift for each edge, maximize over $x_{u} \in[q]$ the fraction of satisfied edges $\mathbb{E}_{e=(u, v) \in E} 1\left[x_{v}=x_{u}+c_{e}\right]$.

Variables: X_{ua} for each $\mathrm{u} \in \mathrm{V}, \mathrm{a} \in[q]$
Constraints: $\quad X^{2}{ }_{\text {ua }}=X_{\text {ua }}$

$$
\sum_{a} X_{u a}=1
$$

Objective: $\mathbb{E}_{\mathrm{e}=(\mathrm{u}, \mathrm{v}) \in \mathrm{E}} \sum_{\mathrm{a}} \mathrm{X}_{\mathrm{ua}} \mathrm{X}_{\mathrm{v}, \mathrm{a}+\mathrm{c}}$
Run $\mathrm{SoS}_{\mathrm{D}}$ to produce \tilde{E} for the above system. \tilde{E} is a fake distribution of solutions, which has pseudo-expected value at least $(1-\varepsilon)$.
Our goal is to design a rounding algorithm to "sample" from E E a real solution with value $\Omega_{\varepsilon}(1)$

How does SoS perform on UG?

Let (G, Π) be a UG instance with value at least (1- ε).
Theorem [BRS'11]. If G has threshold rank r, then rounding $\mathrm{SoS}_{\mathrm{O}_{(r 2)}}$ solves UG
Theorem [BRS'11]. For general G, rounding $\mathrm{SoS}_{\mathrm{nO}(\varepsilon)}$ solves UG
Theorem [BBKSS'21]. If G is a D-certifiable small set expander, then rounding $\mathrm{SoS}_{\mathrm{O}(\mathrm{D})}$ solves UG

Theorem [BBKSS'21]. If G is the Johnson graph, then rounding SoS $_{\mathrm{O}_{(1)}}$ solves UG
Open: does rounding SoS_{4} solve UG?

I. Rounding low threshold rank

Theorem [BRS'11]. If G has threshold rank r, then rounding $\mathrm{SoS}_{\mathrm{O}_{(2)}}$ solves UG

Threshold Rank

Given a d-regular graph G and a set of vertices $S(|S| \leq n / 2)$, the expansion of S is

$$
\left.\Phi_{G}(S)=E(S, V \backslash S) / d \times|S|=\operatorname{Pr[1-step~walk~leaves~} S\right]
$$

The spectrum of G are the eigenvalues of the normalized adjacency matrix A / d
\square The spectrum is a subset of $[-1,+1]$ of size n. Recall that +1 is always an eigenvalue.
The threshold rank $\operatorname{rank}_{T}(G)$ is the number of eigenvalues bigger than T
\square We will always use constant T , such as $\mathrm{T}=1-\mathrm{poly}(\varepsilon)$
Example: expanders have $\operatorname{rank}_{\Omega(1)}(\mathrm{G})=1$ Ex: k expanders + few edges has $\operatorname{rank}_{\Omega(1)}(G)=k+1$

Threshold Rank

Example: cycle graph C_{n}

Example: Boolean Hypercube $\{-1,+1\}^{n}$

All dense graphs have low threshold rank:
Lemma. Any d-regular graph G with $d=p n$ has $\operatorname{rank}_{T}(G) \leq p / T^{2}=O(1)$
Proof. $\sum_{i} \lambda_{i}{ }^{2}=\operatorname{tr}\left((A / d)^{2}\right)=\sum_{v} \operatorname{Pr}[2-$ step walk returns to v$]=\mathrm{n} / \mathrm{d}=\mathrm{O}(1)$. Therefore at most $O(1)$ eigenvalues are bigger than T .

Correlation Rounding on Low Threshold Rank Graphs

Theorem [BRS'11]. If G has $\left(1-\varepsilon^{5}\right)$-threshold rank r, then rounding $\operatorname{SoS}_{\mathrm{O}_{(r 2)}}$ solves UG
Idea: we wish that one of these two rounding schemes worked:
for each v, sample v independently from its local distribution Edges unsatisfied!
for each $e=(u, v)$, sample (u, v) according to its local distribution Not consistent!
Key observation: in a low threshold rank graph, after conditioning on a small number of randomly selected vertices, these become close (in total variation distance)!

We call this procedure "condition and round"
\square Formally, for a random set S of size $O\left(r^{2}\right)$, sample an assignment X_{S} from the local distribution on S, then sample the assignment to u from the conditioned local distribution $\operatorname{Pr}\left[X_{u} \mid X_{s}\right]$. These distributions exist provided the SoS degree is at least $|\mathrm{S}|+1$

Correlation Rounding on Low Threshold Rank Graphs

Theorem [BRS'11]. If G has $\left(1-\varepsilon^{5}\right)$-threshold rank r, then rounding $\operatorname{SoS}_{\mathrm{O}_{(r 2)}}$ solves UG
Proof. We prove that condition+round on $\mathrm{O}\left(\mathrm{r}^{2}\right)$ random vertices works
Theorem [Raghavendra-Tan '11]. Given any boolean-valued random variables X_{1}, \ldots, X_{n} there is $S \subseteq[n],|S| \leq O\left(r^{2}\right)$ such that $\mathbb{E}_{i, j \in[n]}\left[T V\left(X_{i}, X_{j}\right) \mid X_{S}\right] \leq 1 / r$

Theorem. If $\mathbb{E}_{(i, j) \in \varepsilon}\left[\operatorname{TV}\left(X_{i}, X_{j}\right)\right] \geq 1-2 \varepsilon$, then $\mathbb{E}_{\mathrm{i}, \mathrm{j} \in \mathrm{V}}\left[\operatorname{TV}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\right] \geq \operatorname{poly}(\varepsilon) / \operatorname{rank}_{1-\text { poly }(\varepsilon)}(\mathrm{G})$
After conditioning, we may conclude that $\mathbb{E}_{(i, j) \in E}\left[T V\left(X_{i,}, X_{j}\right)\right] \leq 1-2 \varepsilon$.
Looking at the event "edge (i, j) is satisfied", we have:

II. General graphs in subexponential time

Theorem [BRS'11]. If G has threshold rank r, then rounding $\mathrm{SoS}_{\mathrm{O}_{(r 2)}}$ solves UG \square

Theorem [BRS'11]. For general G, rounding $\mathrm{SoS}_{\mathrm{nO}(\varepsilon)}$ solves UG

What about high threshold rank?

Recall: cycle graph C_{n}

Cutting ε fraction of the edges changes the objective value by at most ε.

If you let me partition the graph by cutting $\mathrm{O}_{\varepsilon}(1)$ fraction of edges, what can I do?
Lemma [ABS'10]. Any graph G can be partitioned into pieces V_{i} with $\operatorname{rank}_{1-\varepsilon 5}\left(\mathrm{G}\left[\mathrm{V}_{\mathrm{i}}\right]\right) \leq \mathrm{n}^{100 \varepsilon}$ by cutting at most $\mathrm{O}(\varepsilon \log (1 / \varepsilon))$ fraction of edges

Overall algorithm: run $\mathrm{SoS}_{\mathrm{n} 100 \varepsilon}$ on the entire graph, which gives a feasible $\mathrm{SoS}_{\mathrm{n} 100 \varepsilon}$ solution on each subgraph. Condition+round on each subgraph.

Graph Partitioning Lemma

If you let me partition the graph by cutting $\mathrm{O}_{\varepsilon}(1)$ fraction of edges, what can I do?
Lemma [Arora-Barak-Steurer '10]. Any graph G can be partitioned into pieces V_{i} with $\operatorname{rank}_{1-\varepsilon 5}\left(G\left[V_{i}\right]\right) \leq n^{100 \varepsilon}$ by cutting at most $O(\varepsilon \log (1 / \varepsilon))$ fraction of edges

Lemma [folklore]. Any graph G can be partitioned into pieces V_{i} with $\Phi_{G}\left(V_{i}\right) \leq \varphi$ by cutting at most $\mathrm{O}(\varphi \log \mathrm{n})$ fraction of edges

Proof idea: If G itself is a φ-expander, great! Otherwise there is a non-expanding set $\mathrm{S},|\mathrm{S}| \leq \mathrm{n} / 2$. Partition G into S and VIS and recurse.

Graph Partitioning Lemma

Lemma [Arora-Barak-Steurer '10]. Any graph G can be partitioned into pieces V_{i} with $\operatorname{rank}_{1-\varepsilon 5}\left(G\left[\mathrm{~V}_{\mathrm{i}}\right]\right) \leq \mathrm{n}^{100 \varepsilon}$ by cutting at most $\mathrm{O}(\varepsilon \log (1 / \varepsilon))$ fraction of edges

Proof: Use the following lemma.
Lemma [ABS'10]. For a graph G with $\operatorname{rank}_{1-\varepsilon 5}\left(G\left[V_{i}\right]\right)>n^{100 \varepsilon}$, we can find a subset S with $|S| \leq n^{1-\varepsilon}$ and $\Phi_{G}(S) \leq \varepsilon^{2}$

Recursive apply the lemma to bad pieces or until $\left|\mathrm{V}_{\mathrm{i}}\right| \leq \mathrm{n}^{\varepsilon}$
After k subdivisions, piece has size $n^{(1-\varepsilon)}$. Therefore each piece is subdivided at most $\mathrm{k}=\mathrm{O}(\log (1 / \varepsilon) / \varepsilon)$ times. Total fraction of edges cut $=\varepsilon^{2} \mathrm{k}=\mathrm{O}(\varepsilon \log (1 / \varepsilon))$

III. Certified Small Set Expanders

Theorem [BBKSS'21]. If G is a D-certifiable small set expander, then rounding $\mathrm{SoS}_{\mathrm{O}(\mathrm{D})}$ solves UG

Small Set Expansion

G is a (δ, η)-small set expander (SSE) if for all $|S| \leq \delta n, \Phi_{G}(S) \geq \eta$
$\square \delta, \eta$ are fixed small constants while val(G) $\geq 1-\varepsilon$ where $\varepsilon \ll \delta, \eta$
Idea for rounding SoS on a small set expander:
Recall that Ẽ gives access to a claimed distribution of high-value solutions on G .
Suppose we sample two independent high-value solutions X, X '.
We claim that in a SSE these solutions will have significant overlap.
Define the (random vbl) shift partition by partitioning V on $X_{v}-X_{v}^{\prime} \in[q]$.
Lemma. Edges between blocks of the shift partition are violated in either X or X^{\prime}
Since X, X^{\prime} have value $1-\varepsilon$, at most 2ε fraction of edges cross the partition. Therefore, at least one block of the shift partition must be non-expanding. In a SSE, this block must be large, |block| > δn.

Shift Partitions

shift partition X^{\prime} - X

Since edges across the shift partition are violated, but X,X' have high value, at least one block of the shift partition is non-expanding

Rounding SSEs

Takeaway: in a $(\delta, \eta)-$ SSE, there is a block of the shift partition with size $\geq \delta n$
This implies the following rounding algorithm succeeds: condition on one random vertex, then round the remaining vertices independently
\square Use Z_{u} to denote the output assignment, while X_{u} and X_{u}^{\prime} denote the variables of the SoS program
\square Set $Z_{u}=0$, then sample Z_{v} independently from $\tilde{P r}_{x}\left[X_{v}=a \mid X_{u}=0\right]$
Lemma. $\mathbb{E}_{\text {rounding Z }}[$ value $(Z)] \geq \delta^{2}-\varepsilon=\Omega(1)$
Lemma. For symmetrized \tilde{E}, the conditional dist $X_{v} \mid X_{u}=0$ is the same as $X_{v}-X_{u}$

Rounding SSEs

Lemma. $\mathbb{E}_{\text {rounding Z }}[$ value $(Z)] \geq \delta^{2}-\varepsilon$
Proof: $\quad \mathbb{E}_{\mathrm{z}}[$ value $(Z)]=\mathbb{E}_{\mathrm{u}} \mathbb{E}_{(v, w) \in E} \operatorname{Pr}_{\mathrm{Z} \mid \mathrm{Zu}=0}\left[Z_{\mathrm{w}}-\mathrm{Z}_{\mathrm{v}}=\mathrm{c}_{\mathrm{vw}}\right]$

$$
\begin{aligned}
& =\mathbb{E}_{u} \mathbb{E}_{(v, w) \in E} \tilde{P r}_{r_{X}, X}\left[X_{w}-X_{v}^{\prime}=c_{v w} \mid X_{u}=X_{u}^{\prime}=0\right] \\
& =\mathbb{E}_{u} \mathbb{E}_{(v, w) \in E} \tilde{P r}_{X, X}\left[X_{w}-X_{u}-X_{v}^{\prime}+X_{u}^{\prime}=c_{v w}\right]
\end{aligned}
$$

If u, v are in the same block of the shift partition of X and X, and v, w is a satisfied edge of X, then this event will occur. Hence,
$\geq \mathbb{E}_{\mathrm{u}} \mathbb{E}_{(v, w) \in \mathrm{E}} \tilde{\mathrm{Pr}}_{\mathrm{X}, \mathrm{X}}[\mathrm{u}, \mathrm{v}$ in same block of shift partition, (v, w) is satisfied in X$]$
By a union bound,
$\geq 1-\mathbb{E}_{u, v} \tilde{P}_{r_{x, X}}[u, v$ not in same block of shift partition $]-\mathbb{E}_{v, w} \tilde{\operatorname{Pr}}_{\mathrm{x}}[(\mathrm{v}, \mathrm{w})$ unsat in X$]$
$\geq 1-\left(1-\delta^{2}\right)-\varepsilon=\delta^{2}-\varepsilon$

SoS-izing Rounding SSEs

Lemma. If G is a D-certifiable ($\bar{\delta}, \eta$)-SSE, then $\mathrm{SoS}_{\mathrm{D}}$ satisfies $\mathbb{E}_{u, v} \tilde{\mathrm{P}}_{\mathrm{X}, \mathrm{X}}[\mathrm{u}, \mathrm{v}$ in same block of shift partition $] \geq \delta^{2}$
[Simplified] We say that a (δ, η)-SSE G is D-certifiable if there is a degree-D SoS proof of

$$
X_{v}^{2}=X_{v} \quad \Rightarrow \quad \mathbb{E}_{(v, w) \in E} X_{v}\left(1-X_{w}\right) \geq \eta \mathbb{E}_{v} X_{v}+0.1\left(\mathbb{E}_{v} X_{v}\right)\left(\delta-\mathbb{E}_{v} X_{v}\right)
$$

$$
\operatorname{Pr}[\text { edge crosses } \mathrm{S}] \geq \eta \operatorname{Pr}[\text { edge starts in } \mathrm{S}]+c(|\mathrm{~S}| / n)(\delta-|\mathrm{S}| / n)
$$

Proof sketch. It suffices to show that $\tilde{E}_{\mathrm{X}, \mathrm{x}}, \mid$ block $\mathrm{a} \mid / \mathrm{n} \geq \delta$ for some a.
Write the SSE SoS proof for the block indicators $E_{v a}=1\left[X_{v}-X_{v}^{\prime}=a\right]$.
Apply \tilde{E} to both sides of the proof. If $\tilde{E}|b l o c k a| / n<\delta$ for all a, then going through the argument that edges across the shift partition violate X or X ', we conclude that the value of \tilde{E} is at most $1-\eta \ll 1-\varepsilon$, a contradiction.

IV. Johnson graph

Theorem [BBKSS'21]. If G is the Johnson graph, then rounding $\mathrm{SoS}_{\mathrm{O}(1)}$ solves UG

Johnson Graph

The (n, ℓ, α) Johnson graph has vertices $([n]$ choose $\ell)$ and edges at intersection size (1- α) ℓ
$\square \ell, \alpha$ are constants and $\alpha \in[0,1]$ is the "noise parameter"
Slice of the hypercube $\{-1,+1\}^{n}$
The Johnson graph is not SSE. There are $\mathrm{n}+1$ eigenspaces. Non-exp' ing sets are subcubes
\square For $T \subseteq[n]$, the subcube for T (also known as link) is $C=\{S: S \supseteq T\}$
(n, α) Noisy Hypercube on $\{-1,+1\}^{n}$
r-restricted subcube $=\left\{x: x_{1}=x_{2}=\ldots=x_{r}=1\right\}$
Expansion $\approx 1-(1-\alpha)^{r}$
Fractional volume $=1 / 2^{r}$
($\mathrm{n}, \ell, \mathrm{a}$) Johnson graph
r-restricted subcube $=\left\{x: x_{1}=x_{2}=\ldots=x_{r}=1\right\}$
Expansion $\approx 1-(1-\alpha)^{r}$
Fractional volume $\approx 1 / n^{r}$

Rounding the Johnson Graph

If we sample two high-value solutions, the shift partition must have a non-expanding set, but it's not necessarily large anymore

Idea: apply condition+round on just this set, fix those vertices, and repeat \tilde{E} is only changed on edges incident to the non-expanding set
If the value of Ë changes, should be able to satisfy some incident edges
Since the set is non-expanding, C\&R satisfies nontrivial fraction of incident edges
Several pieces of the analysis are specific to the Johnson graph
\square Proof that shift partition is correlated with a subcube requires degree $\mathrm{O}(1)$ SoS proof
\square How to find the non-expanding subcube? Brute force search over all subcubes in poly(n) time
\square Need that non-expanding sets chosen in the future have small overlap with previous ones

Rounding the Johnson Graph

Formal rounding algorithm (for a carefully chosen parameter δ):
while Ẽ has value at least $1-2 \varepsilon$:
Find a non-expanding subcube C such that "condition+round value" $\geq \delta$
Perform condition+round on C
Rerandomize Ẽ on C: $\tilde{E}[X] \leftarrow 1 / \mathrm{q}^{|c|} \sum_{\sigma \in[q] c} \tilde{E}\left[\prod_{v \in C} X_{v, \sigma(v)} X\right]$
Set remaining values arbitrarily

Lemma. There is a subcube with condition+round value $\geq \delta$
Lemma. If the value decreases by v , at least $\Omega(\mathrm{v})$ fraction of edges become sat

Conclusion and Open Problems

UG is easy on: low threshold rank, certified SSEs, graphs with small number of distinct large eigenvalues/simple non-expanding sets UG is unknown on: graphs with less structured spectra

Solve UG on the hypercube graph
Construction of a non-SoS-certifiable SSE
Other graph decompositions cutting ε fraction of edges?
Smarter ways to round SoS?
Counting Unique Games vs \#BIS

Correlation Rounding on Low Threshold Rank Graphs

Define $\operatorname{TV}\left(X_{u}, X_{v}\right)=1 / 2 \sum_{a, b \in[q]}\left|\operatorname{Pr}\left[X_{u}=a, X_{v}=b\right]-\operatorname{Pr}\left[X_{u}=a\right] \operatorname{Pr}\left[X_{v}=b\right]\right|$
Conditioning reduces the average pairwise correlation of the variables:
Theorem [Raghavendra-Tan '11]. For all r and all boolean-valued random variables X_{1}, \ldots, X_{n} there is $t \leq O\left(r^{2}\right)$ such that $\mathbb{E}_{|S|=t} \mathbb{E}_{i, j \in[n]}\left[T V\left(X_{i}, X_{j}\right) \mid X_{S}\right] \leq 1 / r$
Proof. Claim: there is $t \leq r$ such that $\mathbb{E}_{|S|=t} \mathbb{E}_{i, j \in[n]}\left[I\left(X_{i} ; X_{j} \mid X_{S}\right)\right] \leq 1 / r \quad I(X ; Y)=H(X)-H(X \mid Y)$

$$
\sum_{t=0}^{r-1} \mathbb{E}_{|S| \mid=t} \mathbb{E}_{\mathrm{i}, \mathrm{j} \in[n]}\left[\mathrm{I}\left(\mathrm{X}_{\mathrm{i}} ; \mathrm{X}_{\mathrm{j}} \mid \mathrm{X}_{\mathrm{S}}\right)\right]=\mathbb{E}_{\mathrm{i} \in[n]}\left[H\left(\mathrm{X}_{\mathrm{i}}\right)\right]-\mathbb{E}_{|\mathrm{R}|=\mathrm{r}} \mathbb{E}_{\mathrm{i} \in[n]}\left[\mathrm{H}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{R}}\right)\right] \leq 1
$$

Finally, use $\operatorname{TV}\left(\mathrm{Xi}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right) \leq \mathrm{O}\left(\sqrt{\mathrm{I}}\left(\mathrm{Xi}_{\mathrm{i}} ; \mathrm{X}_{\mathrm{j}}\right)\right)$ and Jensen's inequality.
Theorem [Jain-Koehler-Risteski '18]. Cannot improve $\mathrm{O}\left(\mathrm{r}^{2}\right)$ to $o\left(r^{2}\right)$:
Sherrington-Kirkpatrick model

Local to Global Correlations

In an expander or low threshold rank graph, local correlation implies global correlation
Theorem. If $\mathbb{E}_{\mathrm{i} \in \mathrm{V}}\left\|v_{\mathrm{i}}\right\|^{2}=1$ and $\mathbb{E}_{(\mathrm{i}, \mathrm{j}) \in \mathrm{E}}\left[\left\langle v_{\mathrm{i}}, v_{\mathrm{j}}\right\rangle\right] \geq 1-\varepsilon$, then $\mathbb{E}_{\mathrm{i}, \mathrm{j} \in \mathrm{V}}\left[\left\langle\mathrm{v}_{\mathrm{i}}, v_{\mathrm{j}}\right\rangle^{2}\right] \geq 1 / \mathrm{rank}_{1-2 \varepsilon}(\mathrm{G})$
Proof sketch. For simplicity, assume v_{i} are scalar-valued (one-dimensional). Consider the spectral sample $\lambda_{\mathrm{e}} \sim \mathrm{v}$ by taking λ_{e} with probability $\left\langle\mathrm{v}, \mathrm{b}_{\mathrm{e}}\right\rangle^{2}$.

Local correlation: $\quad \mathbb{E}_{(i, j) \in E} v_{i} v_{j}=v^{\top}(A / d) v / n=\mathbb{E}_{\lambda e-v}\left[\lambda_{\mathrm{e}}\right]$
Global correlation:

$$
\mathbb{E}_{\mathrm{i}, \mathrm{j} \in \mathrm{v}}\left(v_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right)^{2} \geq\left\|\mathrm{p}\left(\lambda_{\mathrm{e}}\right)\right\|_{2}^{2}
$$

Using Cauchy-Schwarz,

$$
\operatorname{Pr}_{\lambda e-v}\left[\lambda_{\mathrm{e}} \geq 1-2 \varepsilon\right] \leq \operatorname{rank}_{1-2 \varepsilon}(G)\left\|p\left(\lambda_{\mathrm{e}}\right)\right\|_{2}^{2}
$$

Compare this with $\mathbb{E}\left[\lambda_{\mathrm{e}}\right]$ using the inequality below, then rearrange,

$$
\mathbb{E}_{\lambda \mathrm{e} \sim \mathrm{v}}\left[\lambda_{\mathrm{e}}\right] \leq \operatorname{Pr}_{\lambda \mathrm{e} \sim v}\left[\lambda_{\mathrm{e}} \geq 1-2 \varepsilon\right]+(1-2 \varepsilon)\left(1-\operatorname{Pr}_{\lambda \mathrm{e} \sim \mathrm{v}}\left[\lambda_{\mathrm{e}} \geq 1-2 \varepsilon\right]\right)
$$

Local to Global Correlations

Passing to TV...
Theorem. If $\mathbb{E}_{(i, j) \in E}\left[\operatorname{TV}\left(X_{i}, X_{j}\right)\right] \geq \varepsilon$, then $\mathbb{E}_{\mathrm{i}, \mathrm{j} \in \mathrm{V}}\left[\operatorname{TV}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\right] \geq \operatorname{poly}(\varepsilon) / \operatorname{rank}_{1 \text {-poly(} \varepsilon)}(\mathrm{G})$

Proof sketch. Let v_\{ia\}=w_\{ia\}+c_\{ia\}1 be the SDP vectors.
We have TV $(X i, X j)=$ sum_\{a,b\} $\left|<w _\{i a\}, w _\{j b\}>\right|$.
Construct vi such that <vi, vj> = poly(TV(Xi, Xj)) and apply the Lemma on v_{i}.
Specifically, let vi = sum_a w_\{ia\}^\{otimes 2\}/\|w_ia\|

