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Unique Games
Unique Games (UG) problem: Fix constant q. Given (G, Π) where G is 
a directed graph, Π = (πe)e∈E is a permutation of [q] for each edge,

W maximize over xu∈[q] 𝔼e=(u,v)∈E 1[xv = πe(xu)]

       0. Introduction

Lemma. WLOG constraints are affine, undirected, and the graph is d-regular.

Unique Games Conjecture (UGC): For all ε, s > 0, there is q sufficiently large such that it 
is NP-hard to distinguish between: (G, Π) has value ≥1-ε or value ≤ s.

“Solve UG” = when the input is (1-ε) satisfiable, find a solution with value Ωε(1)
⮩Drop the parameter s from here on out and assume we are given (1-ε) satisfiable (G, Π), where ε is a 

tiny constant

q=4



Sum-of-Squares
Our most effective algorithm for Unique Games is the Sum-of-Squares algorithm

Sum-of-Squares can be used to maximize a polynomial system
Sum-of-Squares (SoSD) algorithm: given “degree” D, search for a 
pseudoexpectation Ẽ which maximizes Ẽ[objective].

Ẽ looks like a real expectation over a distribution on ℝ#variables with 
respect to:

(1) degree D/2 local reasoning
(2) Ẽ[p(X)2] ≥ 0 for all degree ≤D/2 polynomials p

       0. Introduction

P̃r denotes the local probability distribution, e.g. P̃r[Xi = a]



Sum-of-Squares for Unique Games

Run SoSD to produce Ẽ for the above system. Ẽ is a fake distribution of solutions, which has 
pseudo-expected value at least (1-ε).
Our goal is to design a rounding algorithm to “sample” from Ẽ a real solution 
with value Ωε(1)

Variables: Xua for each u∈V, a∈[q] Xua indicates that u is assigned a

W Constraints: X2
ua

 = Xua Boolean variables, Xua in {0,1}

ΣaXua = 1 Exactly one label per vertex

W Objective: 𝔼e=(u,v)∈E Σa Xua Xv,a+c

Given (G, Π) where G is a directed graph, Π = (ce)e∈E is an affine shift for each edge, 
maximize over xu∈[q]  the fraction of satisfied edges 𝔼e=(u,v)∈E 1[xv = xu + ce].

       0. Introduction



How does SoS perform on UG?
Let (G, Π) be a UG instance with value at least (1-ε).

Theorem [BRS’11]. If G has threshold rank r, then rounding SoSO(r2) solves UG

       0. Introduction

Theorem [BBKSS’21]. If G is a D-certifiable small set expander, then rounding 
SoSO(D) solves UG

Theorem [BBKSS’21]. If G is the Johnson graph, then rounding SoSO(1) solves UG

Open: does rounding SoS4 solve UG?

Theorem [BRS’11]. For general G, rounding SoSnO(ε) solves UG



I. Rounding low threshold rank

Theorem [BRS’11]. If G has threshold rank r, then rounding SoSO(r2) solves UG



Given a d-regular graph G and a set of vertices S (|S|≤n/2), the expansion of S is
ΦG(S) = E(S, V \ S) / d×|S| = Pr[1-step walk leaves S]

The spectrum of G are the eigenvalues of the normalized adjacency matrix A/d
⮩The spectrum is a subset of [-1, +1] of size n. Recall that +1 is always an eigenvalue.

The threshold rank rankτ(G) is the number of eigenvalues bigger than τ
⮩We will always use constant τ, such as τ = 1-poly(ε)

Threshold Rank

Example: expanders have rankΩ(1)(G)=1 Ex: k expanders+few edges has rankΩ(1)(G)=k+1



Threshold Rank
Example: cycle graph Cn

       1. Low threshold rank

Example: Boolean Hypercube {-1,+1}n

Lemma. Any d-regular graph G with d = pn has rankτ(G) ≤ p/τ2 = O(1)

Proof. Σi λi
2 = tr((A/d)2) = Σv Pr[2-step walk returns to v] = n/d = O(1). Therefore at most 

O(1) eigenvalues are bigger than τ.

All dense graphs have low threshold rank:

rankτ(Cn) = Θ(n) rankτ(G) = Cn = Nε



Not consistent!for each e = (u,v), sample (u,v) according to its local distribution
 for each v, sample v independently from its local distribution

Correlation Rounding on Low Threshold Rank Graphs

Theorem [BRS’11]. If G has (1-ε5)-threshold rank r, then rounding SoSO(r2) solves UG

Idea: we wish that one of these two rounding schemes worked:

Key observation: in a low threshold rank graph, after conditioning on a small number of 
randomly selected vertices, these become close (in total variation distance)!

We call this procedure “condition and round”
⮩Formally, for a random set S of size O(r2.), sample an assignment XS from the local distribution on S, 
    then sample the assignment to u from the conditioned local distribution P̃r[Xu | XS].
    These distributions exist provided the SoS degree is at least |S|+1

       1. Low threshold rank

Edges unsatisfied!



After conditioning, we may conclude that 𝔼(i,j)∈E [TV(Xi, Xj)] ≤ 1-2ε.
Looking at the event “edge (i, j) is satisfied”, we have:

𝔼round vertices independently 𝔼(i,j)∈Evalue ≥ 𝔼round edges independently 𝔼(i,j)∈Evalue - (1-2ε) ≥ 
ε

Correlation Rounding on Low Threshold Rank Graphs
Theorem [BRS’11]. If G has (1-ε5)-threshold rank r, then rounding SoSO(r2) solves UG

Proof. We prove that condition+round on O(r2) random vertices works

       1. Low threshold rank

Theorem. If 𝔼(i,j)∈E [TV(Xi, Xj)] ≥ 1-2ε, then 𝔼i,j∈V [TV(Xi, Xj)] ≥ poly(ε)/rank1-poly(ε)(G)

Theorem [Raghavendra-Tan ‘11]. Given any boolean-valued random variables X1, ..., Xn 
there is S ⊆ [n], |S| ≤ O(r2) such that 𝔼i, j∈[n][TV(Xi, Xj) | XS] ≤ 1/r



II. General graphs in subexponential time

Theorem [BRS’11]. For general G, rounding SoSnO(ε) solves UG

Theorem [BRS’11]. If G has threshold rank r, then rounding SoSO(r2) solves UG



What about high threshold rank?

       2. UG in subexponential time 

Cutting ε fraction of the edges changes the 
objective value by at most ε.

Lemma [ABS’10]. Any graph G can be partitioned into pieces Vi  with 
rank1-ε5(G[Vi ]) ≤ n100ε by cutting at most O(ε log(1/ε)) fraction of edges

Overall algorithm: run SoSn100ε on the entire graph, which gives a feasible SoSn100ε 
solution on each subgraph. Condition+round on each subgraph.

Recall: cycle graph Cn

rankτ(Cn) = Θ(n)
If you let me partition the graph by cutting Oε(1) fraction of edges, what can I do?

rankτ(piece) = O(1)



Graph Partitioning Lemma

       2. UG in subexponential time 

Lemma [folklore]. Any graph G can be partitioned into pieces Vi with ΦG(Vi) ≤ φ by 
cutting at most O(φ log n) fraction of edges

Lemma [Arora-Barak-Steurer ’10]. Any graph G can be partitioned into pieces Vi  
with rank1-ε5(G[Vi ]) ≤ n100ε by cutting at most O(ε log(1/ε)) fraction of edges

If you let me partition the graph by cutting Oε(1) fraction of edges, what can I do?

Proof idea: If G itself is a φ-expander, great! 
Otherwise there is a non-expanding set S, |S| ≤ n/2. 
Partition G into S and V\S and recurse.



Graph Partitioning Lemma

       2. UG in subexponential time 

Lemma [ABS’10]. For a graph G with rank1-ε5(G[Vi ]) > n100ε, we can find a subset S 
with |S| ≤ n1-ε and ΦG(S) ≤ ε2

Proof: Use the following lemma.

Lemma [Arora-Barak-Steurer ’10]. Any graph G can be partitioned into pieces Vi  
with rank1-ε5(G[Vi ]) ≤ n100ε by cutting at most O(ε log(1/ε)) fraction of edges

Recursive apply the lemma to bad pieces or until |Vi| ≤ nε 

After k subdivisions, piece has size n(1-ε)k. Therefore each piece is subdivided at most  
k = O(log(1/ε)/ε) times. Total fraction of edges cut = ε2k = O(ε log(1/ε))



III. Certified Small Set Expanders

Theorem [BBKSS’21]. If G is a D-certifiable small set expander, then rounding 
SoSO(D) solves UG



In a SSE, this block must be large, |block| > δn.
Therefore, at least one block of the shift partition must be non-expanding.

Define the (random vbl) shift partition by partitioning V on Xv - X’v ∈ [q].
We claim that in a SSE these solutions will have significant overlap.
Suppose we sample two independent high-value solutions X, X’.
Recall that Ẽ gives access to a claimed distribution of high-value solutions on G.

Idea for rounding SoS on a small set expander:

Small Set Expansion
G is a (δ, η)-small set expander (SSE)  if for all |S| ≤ δn, ΦG(S) ≥ η

⮩δ, η are fixed small constants while val(G) ≥ 1-ε where ε ≪ δ,η

       3. Small set expanders

Lemma. Edges between blocks of the shift partition are violated in either X or X’

Since X, X’ have value 1-ε, at most 2ε fraction of edges cross the partition.



Shift Partitions
X

       3. Small set expanders

X’

Since edges across the shift partition are violated, but X,X’ have high value,
at least one block of the shift partition is non-expanding

shift partition X’ - X



Rounding SSEs
Takeaway: in a (δ, η)-SSE, there is a block of the shift partition with size ≥ δn

This implies the following rounding algorithm succeeds: condition on one random vertex, 
then round the remaining vertices independently

⮩Use Zu to denote the output assignment, while Xu and X’u denote the variables of the SoS program
⮩Set Zu = 0, then sample Zv independently from P̃rX[Xv = a | Xu= 0]

       3. Small set expanders

Lemma. 𝔼rounding Z[value(Z)] ≥ δ2 - ε = Ω(1)

Lemma. For symmetrized Ẽ, the conditional dist Xv | Xu= 0 is the same as Xv - Xu



Proof: 𝔼Z[value(Z)] = 𝔼u 𝔼(v,w)∈E PrZ | Zu = 0[Zw - Zv = cvw]

      = 𝔼u 𝔼(v,w)∈E P̃rX, X’[Xw - Xu - X’v + X’u = cvw]

If u, v are in the same block of the shift partition of X and X’, and v,w is a satisfied 
edge of X, then this event will occur. Hence,

≥ 𝔼u 𝔼(v,w)∈E P̃rX, X’[u,v in same block of shift partition, (v,w) is satisfied in X]

By a union bound,
≥ 1 - 𝔼u,vP̃rX,X’[u,v not in same block of shift partition] - 𝔼v,w P̃rX[(v,w) unsat in X]
≥ 1 - (1 - δ2) - ε = δ2 - ε

      = 𝔼u 𝔼(v,w)∈E P̃rX, X’[Xw - X’v = cvw | Xu = X’u = 0]

Rounding SSEs

       3. Small set expanders

Lemma. 𝔼rounding Z[value(Z)] ≥ δ2 - ε



Apply Ẽ to both sides of the proof. If Ẽ |block a|/n < δ for all a, then going through the 
argument that edges across the shift partition violate X or X’, we conclude that the 
value of Ẽ is at most 1-η ≪ 1-ε, a contradiction.

Write the SSE SoS proof for the block indicators Eva = 1[Xv - X’v = a].

    Pr[edge crosses S]  ≥ ηPr[edge starts in S] + c (|S|/n) (δ - |S|/n)

SoS-izing Rounding SSEs

       3. Small set expanders

Lemma. If G is a D-certifiable (δ, η)-SSE, then SoSD satisfies
𝔼u,vP̃rX, X’[u,v in same block of shift partition] ≥ δ2

[Simplified] We say that a (δ, η)-SSE G is D-certifiable if there is a degree-D SoS proof of
Xv

2 = Xv       ⇒     𝔼(v,w)∈E Xv(1-Xw) ≥ η 𝔼v Xv + 0.1(𝔼v Xv)(δ - 𝔼v Xv)

Proof sketch. It suffices to show that ẼX, X’ |block a|/n ≥ δ for some a.



IV. Johnson graph
Theorem [BBKSS’21]. If G is the Johnson graph, then rounding SoSO(1) solves UG



Johnson Graph
The (n, ℓ, α) Johnson graph has vertices ([n] choose ℓ) and edges at intersection size (1-α)ℓ

⮩ℓ,α are constants and α∈[0,1] is the “noise parameter”

Slice of the hypercube {-1, +1}n

The Johnson graph is not SSE. There are n+1 eigenspaces. Non-exp’ing sets are subcubes
⮩For T ⊆ [n], the subcube for T (also known as link) is C = {S : S ⊇ T}

       4. Johnson graph

(n, α) Noisy Hypercube on {-1, +1}n

r-restricted subcube = {x : x1 = x2 = … = xr = 1}
Expansion ≈ 1-(1-α)r

Fractional volume = 1/2r

(n,ℓ,α) Johnson graph 
r-restricted subcube = {x : x1 = x2 = … = xr = 1}
Expansion ≈ 1-(1-α)r

Fractional volume ≈ 1/nr



Since the set is non-expanding, C&R satisfies nontrivial fraction of incident edges

Several pieces of the analysis are specific to the Johnson graph
⮩Proof that shift partition is correlated with a subcube requires degree O(1) SoS proof

⮩How to find the non-expanding subcube? Brute force search over all subcubes in poly(n) time
⮩Need that non-expanding sets chosen in the future have small overlap with previous ones

Ẽ is only changed on edges incident to the non-expanding set
If the value of Ẽ changes, should be able to satisfy some incident edges

Idea: apply condition+round on just this set, fix those vertices, and repeat

If we sample two high-value solutions, the shift partition must have a non-expanding set, 
but it’s not necessarily large anymore

Rounding the Johnson Graph

       4. Johnson graph



Rounding the Johnson Graph
Formal rounding algorithm (for a carefully chosen parameter δ):

while Ẽ has value at least 1 - 2ε:
Find a non-expanding subcube C such that “condition+round value” ≥ δ
Perform condition+round on C

Rerandomize Ẽ on C:     Ẽ[X] ← 1/q|C| Σσ∈[q]C Ẽ[ ∏v∈C Xv,σ(v) X]
Set remaining values arbitrarily

       4. Johnson graph

Lemma. There is a subcube with condition+round value ≥ δ

Lemma. If the value decreases by v, at least Ω(v) fraction of edges become sat



Conclusion and Open Problems
UG is easy on: low threshold rank, certified SSEs, graphs with small 
number of distinct large eigenvalues/simple non-expanding sets
UG is unknown on: graphs with less structured spectra

Solve UG on the hypercube graph
Construction of a non-SoS-certifiable SSE
Other graph decompositions cutting ε fraction of edges?
Smarter ways to round SoS?
Counting Unique Games vs #BIS



Theorem [Jain-Koehler-Risteski ‘18]. Cannot improve O(r2) to o(r2): 
Sherrington-Kirkpatrick model

Correlation Rounding on Low Threshold Rank Graphs

Theorem [Raghavendra-Tan ‘11]. For all r and all boolean-valued random variables X1, 
..., Xn there is t ≤ O(r2) such that 𝔼|S|=t𝔼i, j∈[n][TV(Xi, Xj) | XS] ≤ 1/r

Proof. Claim: there is t ≤ r such that 𝔼|S|=t𝔼i, j∈[n][ I(Xi; Xj | XS)] ≤ 1/r

Σt
r
=
-
0

1  𝔼|S|=t𝔼i, j∈[n][ I(Xi; Xj | XS)] = 𝔼i∈[n] [H(Xi)] - 𝔼|R| = r𝔼i∈[n][H(Xi | XR)] ≤ 1

Finally, use TV(Xi, Xj) ≤ O(√I(Xi; Xj)) and Jensen’s inequality.W

       1. Low threshold rank

Define TV(Xu, Xv) = ½ Σa,b∈[q] |Pr[Xu=a,Xv=b] - Pr[Xu=a]Pr[Xv=b]|
Conditioning reduces the average pairwise correlation of the variables:

I(X;Y) = H(X) - H(X|Y)



Local to Global Correlations

Theorem. If 𝔼i∈V||vi||
2 = 1 and 𝔼(i,j)∈E [⟨vi, vj⟩] ≥ 1-ε, then 𝔼i,j∈V [⟨vi, vj⟩

2] ≥ 1/rank1-2ε(G)

Proof sketch. For simplicity, assume vi are scalar-valued (one-dimensional). Consider 
the spectral sample λe~ v by taking λe with probability ⟨v, be⟩

2. 
Local correlation: 𝔼(i,j)∈E vivj = vT(A/d)v / n = 𝔼λe~v[λe]
Global correlation: 𝔼i,j∈V (vivj)

2 ≥ ||p(λe)||2
2

Using Cauchy-Schwarz, 
Prλe~v[λe ≥ 1-2ε] ≤ rank1-2ε(G) ||p(λe)||2

2

Compare this with 𝔼[λe] using the inequality below, then rearrange,
𝔼λe~v[λe] ≤ Prλe~v[λe ≥ 1-2ε] + (1-2ε)(1-Prλe~v[λe ≥ 1-2ε])

In an expander or low threshold rank graph, local correlation implies global correlation

       1. Low threshold rank



Local to Global Correlations

Theorem. If 𝔼(i,j)∈E [TV(Xi, Xj)] ≥ ε, then 𝔼i,j∈V [TV(Xi, Xj)] ≥ poly(ε)/rank1-poly(ε)(G)

Proof sketch. Let v_{ia} = w_{ia}+c_{ia}1 be the SDP vectors.
We have TV(Xi, Xj) = sum_{a,b} |<w_{ia}, w_{jb}>|.
Construct vi such that <vi, vj> = poly(TV(Xi, Xj)) and apply the Lemma on vi.

Specifically, let vi = sum_a w_{ia}^{otimes 2} / ||w_ia||

Passing to TV...

       1. Low threshold rank


