Sum-of-Squares for Unique Games

~

E[f?] > 0

Chris Jones
University of Chicago
Advisor: Aaron Potechin
Committee: Laszlé Babai, Aaron Potechin, Madhur Tulsiani



Unique Games (3)
+2 +1
Unique Games (UG) problem: Fix constant g. Given (G, 1) where G is GAQ

a directed graph, 1= (1t )__. is a permutation of [q] for each edge, q=4

e€E

maximize over x €[q] E, yee 11X, =T (x,)]

Unique Games Conjecture (UGC): For all €, s > O, there is g sufficiently large such that it
is NP-hard to distinguish between: (G, I1) has value 21-¢ or value < s.

[Lemma. WLOG constraints are affine, undirected, and the graph is d-regular.

“Solve UG” = when the input is (1-¢) satisfiable, find a solution with value Q (1)
"1Drop the parameter s from here on out and assume we are given (1-€) satisfiable (G, I1), where € is a
tiny constant
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Sum-of-Squares
Our most effective algorithm for Unique Games is the Sum-of-Squares algorithm

Sum-of-Squares can be used to maximize a polynomial system

Sum-of-Squares (SoS,) algorithm: given “degree” D, search for a

, 5 +2 +1
pseudoexpectation E which maximizes E[objective].

E looks like a real expectation over a distribution on R*V2130les \yith
respect to:

(1) degree D/2 local reasoning

(2) E[p(X)z] > O for all degree <D/2 polynomials p

Pr denotes the local probability distribution, e.g. I-g’r[Xi = a]

0. Introduction



Sum-of-Squares for Unique Games

Given (G, IN) where G is a directed graph, I = (c_)_. is an affine shift for each edge,
maximize over x €[q] the fraction of satisfied edges E__ 1x,=x, +cl

(uv)EE
Variables: Xué1 foreachueV,a€(q] X ,indicates that u is assigned a
Constraints: qua = Xua Boolean variables, X _ in {0,1}
zaXua =1 Exactly one label per vertex
Objective: Ee=(u’v) cE Za X, Xv,a+c

Run SoS, to produce E for the above system. E is a fake distribution of solutions, which has
pseudo-expected value at least (1-€).

Our goal is to design a rounding algorithm to “sample” from E a real solution
with value Q£(1)

0. Introduction



How does SoS perform on UG?

Let (G, 1) be a UG instance with value at least (1-¢).

Theorem [BRS'11]. If G has threshold rank r, then rounding SoS solves UG

(&

Ve

Theorem [BRS'11]. For general G, rounding SoSnO(e) solves UG

(&

' Theorem [BBKSS'21]. If G is a D-certifiable small set expander, then rounding b
SoS,p, solves UG
\ J

Theorem [BBKSS'21]. If G is the Johnson graph, then rounding SoS, ;) solves UG

(&

J

Open: does rounding SoS,, solve UG?

0. Introduction



. Rounding low threshold rank

[Theorem [BRS'11]. If G has threshold rank r, then rounding SOSO(rZ) solves UG




Threshold Rank

Given a d-regular graph G and a set of vertices S (|S|sn/2), the expansion of S is

O (S) = E(S, V\S) / dx|S]| = Pr[1-step walk leaves S]

The spectrum of G are the eigenvalues of the normalized adjacency matrix A/d
[The spectrum is a subset of [-1, +1] of size n. Recall that +1 is always an eigenvalue.

The threshold rank rankT(G) is the number of eigenvalues bigger than T

"1We will always use constant 1, such as 1 = 1-poly(€)

Example: expanders have rank )(G)=1 Ex: k expanders+few edges has rankQ(1)(G)=k+1
N
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Threshold Rank

Example: cycle graph C, Example: Boolean Hypercube {-1,+1}"

-1 0 +1

+1
rankT(Cn) = O(n)
All dense graphs have low threshold rank:
[Lemma. Any d-regular graph G with d = pn has rankT(G) < p/1% = O(1) }

Proof. Zi )\i2 = tr((A/d)?) = 2 Pr[2-step walk returns to v] = n/d = O(1). Therefore at most
O(1) eigenvalues are bigger than 7. O

1. Low threshold rank



Correlation Rounding on Low Threshold Rank Graphs

[Theorem [BRS'11]. If G has (1-£°)-threshold rank r, then rounding 5054 solves UG }

|dea: we wish that one of these two rounding schemes worked:
for each v, sample v independently from its local distribution Edges unsatisfied!
for each e = (u,v), sample (u,v) according to its local distribution =~ Not consistent!

Key observation: in a low threshold rank graph, after conditioning on a small number of
randomly selected vertices, these become close (in total variation distance)!

We call this procedure “condition and round”

"IFormally, for a random set S of size O(r*), sample an assignment X from the local distribution on S,
then sample the assignment to u from the conditioned local distribution Pr[X | X.].

These distributions exist provided the SoS degree is at least |S|+1
1. Low threshold rank



Correlation Rounding on Low Threshold Rank Graphs

[Theorem [BRS'11]. If G has (1-£°)-threshold rank r, then rounding SoSy solves UG }

Proof. We prove that condition+round on O(r?) random vertices works

s R
Theorem [Raghavendra-Tan “11]. Given any boolean-valued random variables X,, ..., X_
thereis S S [n], |S| = O(r?) such that E. E[m][TV(Xi, X,-) | X =1/

" J
4 )
Theorem. If ]E(i’j)eE [TV(X, Xj)] > 1-2¢, then Ei,jev [TV(X, X,-)] > poly(s)/rank1_poly(£)(G)

- J
After conditioning, we may conclude that E, . [TV(X, X)] <1-2e.
Looking at the event “edge (i, j) is satisfied”, we have:

E,.., .valuezE . E. . .value - (1—2;2

round vertices independently ~~ (i,j) €E round edges independently “~ (i,j) EE
€ 1. Low threshold rank




l. General graphs in subexponential time

[Theorem [BRS'11]. If G has threshold rank r, then rounding SOSO(rZ) solves UG }

L

[Theorem [BRS'11]. For general G, rounding SoSnO(e) solves UG }




What about high threshold rank?

Recall: cycle graph C Cutting € fraction of the edges changes the
objective value by at most .

rank rank plece) O()

If you let me partition the graph by cutting O (1) fraction of edges, what can | do?

Lemma [ABS'10]. Any graph G can be partitioned into pieces V. with
rank,__(G[V,]) = n'°% by cutting at most O(e log(1/¢)) fraction of edges

Overall algorithm: run SoS_, . on the entire graph, which gives a feasible SoS

solution on each subgraph. Condition+round on each subgraph.

2. UGin subexponential time

n100¢



Graph Partitioning Lemma

If you let me partition the graph by cutting O (1) fraction of edges, what can | do?

p
Lemma [Arora-Barak-Steurer '10]. Any graph G can be partitioned into pieces V.

with rank,__(G[V,]) = n'°% by cutting at most O(e log(1/¢)) fraction of edges
N

P
Lemma [folklore]. Any graph G can be partitioned into pieces V. with ® (V) = ¢ by

cutting at most O(¢ log n) fraction of edges
.

Proof idea: If Gitself is a ¢-expander, great!
Otherwise there is a non-expanding set S, |S| = n/2.
Partition G into S and V\S and recurse. ]

2. UGin subexponential time



Graph Partitioning Lemma

L

= )

emma [Arora-Barak-Steurer '10]. Any graph G can be partitioned into pieces V.

with rank, _(G[V,]) = n'°° by cutting at most O(e log(1/¢)) fraction of edges

|

Proof: Use the following lemma.

L

(= )

emma [ABS'10]. For a graph G with rank1_£5(G[Vi]) > n'°%¢ we can find a subset S

with |S| = n™ and ®(S) < €’

|

Recursive apply the lemma to bad pieces or until [V | < n

After k subdivisions, piece has size n

k

-0k Therefore each piece is subdivided at most

= O(log(1/€)/¢) times. Total fraction of edges cut = €%k = O(¢ log(1/¢)) []

2. UGin subexponential time



1. Certified Small Set Expanders

Theorem [BBKSS'21]. If G is a D-certifiable small set expander, then rounding
SoSO(D) solves UG




Small Set Expansion

Gisa (9, n)-small set expander (SSE) if forall [S|=dn, @ (S)zn
110, n are fixed small constants while val(G) = 1-€ where ¢ € O,n

Idea for rounding SoS on a small set expander:
Recall that E gives access to a claimed distribution of high-value solutions on G.

Suppose we sample two independent high-value solutions X, X.
We claim that in a SSE these solutions will have significant overlap.
Define the (random vbl) shift partition by partitioningVon X - X' € [q].

[ Lemma. Edges between blocks of the shift partition are violated in either X or X’

Since X, X' have value 1-¢, at most 2¢ fraction of edges cross the partition.
Therefore, at least one block of the shift partition must be non-expanding.
In a SSE, this block must be large, |block| > &n.

3. Small set expanders



Shift Partitions
X X’ shift partition X' - X

o &

Since edges across the shift partition are violated, but X,X’ have high value,
at least one block of the shift partition is non-expanding

3. Small set expanders



Rounding SSEs

Takeaway: in a (9, n)-SSE, there is a block of the shift partition with size = dn

This implies the following rounding algorithm succeeds: condition on one random vertex,

then round the remaining vertices independently
IUse Z  to denote the output assignment, while X and X' denote the variables of the SoS program

[1SetZ =0, then sample Z independently from Pr.[X, =a] X,=0]

( )

Lemma.E_ ding J[value(Z)] = 6%2-¢e=Q(1)

Lemma. For symmetrized E, the conditional dist X,|X=0isthesameasX -X

- J

3. Small set expanders



Rounding SSEs

[ Lemma.E ding J[value(Z)] = 5% -¢
Proof: Ez[value(Z)] =E, E(V,W)EE ZI - O[Z -Z,=c, ]
- ]Eu IE(v,w)E X, I:Xw Xv - va | Xu X’u - O]
- ]Eu E(V,W)EE PrX, X’[XW - Xu - X’v * X’u - va:I

If u, v are in the same block of the shift partition of X and X, and v,w is a satisfied
edge of X, then this event will occur. Hence,

2E E ek Pr, . [u,vin same block of shift partition, (v,w) is satisfied in X]

By a union bound,
>1- ]Eu’vlsrx’x,[u,v not in same block of shift partition] - E_ Pr,[(v.w) unsat in X]
>1-(1-0%)-e=86%-¢ []

3. Small set expanders



SoS-izing Rounding SSEs

Lemma. If G is a D-certifiable (8, n)-SSE, then SoS, satisfies
Eu'vlf’rx’ [u,v in same block of shift partition] = 52

[Simplified] We say that a (8, n)-SSE G is D-certifiable if there is a degree-D SoS proof of
X=X, =  E e X0X)2nE X +0AE X)OE-E X)
Pr[edge crosses S] = nPr[edge starts in S] + c (|S|/n) (d - |S|/n)
Proof sketch. It suffices to show that EX, . Iblock a|/n = & for some a.
Write the SSE SoS proof for the block indicators E _ =1[X - X =al.
Apply E to both sides of the proof. If E |block a|/n < & for all a, then going through the
argument that edges across the shift partition violate X or X, we conclude that the

value of E is at most 1-n < 1-¢, a contradiction. [ ]

3. Small set expanders



IV. Johnson graph

[Theorem [BBKSS'21]. If G is the Johnson graph, then rounding SoS, ;) solves UG }




Johnson Graph

The (n, £, a) Johnson graph has vertices ([n] choose £) and edges at intersection size (1-a)£

1€,d are constants and A €[0,1] is the “noise parameter”

Slice of the hypercube {-1, +1}"
The Johnson graph is not SSE. There are n+1 eigenspaces. Non-exp'ing sets are subcubes
"For T & [n], the subcube for T (also known as link) is C={S:S 2 T}

(n, a) Noisy Hypercube on {-1, +1}" (n,2,0) Johnson graph
r-restricted subcube = {x:x, =x, =..=x =1} r-restricted subcube = {x:x, =x, =..=x =1}
Expansion = 1-(1-a)" Expansion = 1-(1-a)"
Fractional volume = 1/2' Fractional volume = 1/n"

4. Johnson graph



Rounding the Johnson Graph

If we sample two high-value solutions, the shift partition must have a non-expanding set,
but it's not necessarily large anymore

|dea: apply condition+round on just this set, fix those vertices, and repeat
E is only changed on edges incident to the non-expanding set
If the value of E changes, should be able to satisfy some incident edges
Since the set is non-expanding, C&R satisfies nontrivial fraction of incident edges

Several pieces of the analysis are specific to the Johnson graph
1Proof that shift partition is correlated with a subcube requires degree O(1) SoS proof

THow to find the non-expanding subcube? Brute force search over all subcubes in poly(n) time
"'Need that non-expanding sets chosen in the future have small overlap with previous ones

4. Johnson graph



Rounding the Johnson Graph

Formal rounding algorithm (for a carefully chosen parameter d):

while E has value at least 1 - 2¢:

Find a non-expanding subcube C such that “condition+round value” = &
Perform condition+round on C

Rerandomize Eon C:  E[X] « 1/9'“ >

Set remaining values arbitrarily

oE€[qlC Ef HVEC Xv,o(v) X]

[ Lemmma. There is a subcube with condition+round value = &

[ Lemma. If the value decreases by v, at least Q(v) fraction of edges become sat

4. Johnson graph



Conclusion and Open Problems

UG is easy on: low threshold rank, certified SSEs, graphs with small
number of distinct large eigenvalues/simple non-expanding sets
UG is unknown on: graphs with less structured spectra

Solve UG on the hypercube graph

Construction of a non-SoS-certifiable SSE

Other graph decompositions cutting € fraction of edges?
Smarter ways to round SoS?

Counting Unique Games vs #BIS



Correlation Rounding on Low Threshold Rank Graphs

Define TV(Xu, XV) =% Zabe[q] |Pr[Xu=a,Xv=b] - Pr[Xu=a]Pr[Xv=b]|
Conditioning reduces the average pairwise correlation of the variables:

.. X_there is t = O(r?) such that E|S|=t]Ei,jE[n][TV(Xi’ Xj) | X =1/

El'heorem [Raghavendra-Tan ‘11]. For all r and all boolean-valued random variables X,

Proof. Claim: there is t < r such that E|S|=t]Ei'jE[n][ I(X; XJ. | X )] =1/ I0X;Y) = H(X) - H(X]Y)

th'J By By el 106G X I XJT = B HOOT - By B, THIX | X)] <

Finally, use TV(Xi, Xj) = O(/1(Xi; Xj)) and Jensen’s inequality. [ ]

Theorem [Jain-Koehler-Risteski ‘18]. Cannot improve O(r?) to o(r?):
Sherrington-Kirkpatrick model

1. Low threshold rank



Local to Global Correlations

In an expander or low threshold rank graph, local correlation implies global correlation

2 _ > 1= 2 >
[Theorem. fE VP =Tand E ¢ v, w]z1-¢ then K, _, v, v)7] = Vrank, , (G)

|

Proof sketch. For simplicity, assume v. are scalar-valued (one-dimensional). Consider

the spectral sample A_~ v by taking A_ with probability (v, b_)*.

Local correlation: E(I)EEVV vI(A/d)v/n= ]E)\e [)\]
Global correlation: E ey (Vv )%=z ||p( e||

Using Cauchy-Schwarz,
Pr, .. [A 2 1-2e] srank , (G) (AN,

Compare this with E[A_] using the inequality below, then rearrange,

E,. JAJ=Pr, [\ z1-2¢]+ (1-2¢)(1-Pr, _[A_=1-2¢])

1. Low threshold rank



Local to Global Correlations
Passing to TV...

(G)

[Theorem. fE e [TVIX, X)]2z € thenE, , [TV(X, X)] = poly(e)/rank,

Proof sketch. Let v_{ia} = w_{ia}+c_{ia}1 be the SDP vectors.
We have TV(Xi, Xj) = sum_{a,b} |<w_{ia}, w_{jb}>|.
Construct vi such that <vi, vj> = poly(TV(Xi, Xj)) and apply the Lemma on v..

Specifically, let vi = sum_a w_{ia}"{otimes 2} / ||w_.ia|

1. Low threshold rank



