Sum-of-Squares Lower Bounds for Sherrington-Kirkpatrick via Planted Affine Planes

Mrinalkanti Ghosh - TTIC Fernando Granha Jeronimo - University of Chicago **Chris Jones - University of Chicago** Aaron Potechin - University of Chicago Goutham Rajendran - University of Chicago

Introduction

Sherrington-Kirkpatrick (SK) problem: Given $W \in \mathbb{R}^{n \times n}$ sampled from GOE(n), find the maximum value of $x^T W x$ over $x \in \{+1, -1\}^n$

GOE(n): Gaussian Orthogonal Ensemble. A symmetric n x n matrix where the off-diagonal entries are N(O, 1) and the diagonal entries are N(O, 2).

Important problem considered before in

- Computer Science Can be viewed as average-case MaxCut on random graphs where x encodes the partition
- Statistical Physics Can be viewed as minimizing energy of a physical system, where x encodes spin values in a spin-glass model

Facts about SK

Define OPT(W) = max $(x^T W x)$ over all $x \in \{+1, -1\}^n$

 $OPT(W) \le (2 + o(1)) n^{1.5}$ whp over $W \sim GOE(n)$, because W has maximum eigenvalue $(2 + o(1)) n^{0.5}$ whp

[Conjectured by Parisi '79, proved by Talagrand '06] OPT(W) \approx 2 P* n^{1.5} \approx 1.52 n^{1.5} whp over W \sim GOE(n)

Optimization vs Certification

Optimization problem: Given W ~ GOE(n), maximize $x^T W x$ over $x \in \{+1, -1\}^n$

Recently, a breakthrough result by Montanari provided a polynomial time optimization algorithm for SK!

[Montanari '19] There is a poly(n, 1/ ϵ) time algorithm that w.h.p. outputs $x \in \{+1, -1\}^n$ satisfying $x^T W x \ge (2P^* - \epsilon) n^{1.5}$ (under a statistical physics conjecture)

In this work, we are concerned with the certification problem: Given W ~ GOE(n), output an upper bound on max $(x^T W x)$ over $x \in \{+1, -1\}^n$ that gets close to the true optimum whp.

The Sum-of-Squares hierarchy

Sum-of-Squares is a powerful certification method for a polynomial objective/constraints.

The algorithm is parameterized by degree d, with larger d = more powerful SoS.

Main question: what bound can SoS certify for the SK problem?

[Montanari-Sen '16, Kunisky-Bandeira '19, Mohanty-Raghavendra-Xu '20, Kunisky '20] Whp degree-6 SoS has value (2 - o(1)) n^{1.5}

This work: For some constant $\delta > 0$, whp degree-n^{δ} SoS still has value (2-o(1)) n^{1.5}

Rules out degree-O(1) SoS = polynomial time SoS

Planted Affine Planes

Planted Affine Planes (PAP) problem: Let $n \ll m$. If $d_1, ..., d_m$ are random vectors in \mathbb{R}^n sampled from N(O, I_n), can we prove that there is no vector $v \in \mathbb{R}^n$ such that $\langle v, d_u \rangle^2 = 1$ for all u = 1, 2, ..., m?

This work: For $m \le n^{1.5 - \epsilon}$, w.h.p. over $d_1, ..., d_m \sim N(O, I_n)$, degree- n^{δ} SoS thinks this system of equations is feasible.

Remainder of talk: SoS lower bound for PAP

[BHKKMP '16] Recipe for SoS lower bounds

Goal for SoS lower bounds: Construct degree-D pseudodistribution of solutions, specified by pseudomoments $\tilde{\mathbb{E}}[v^S]$ for all subsets S of {1, ..., n} of size at most D.

Equivalently, construct a moment matrix \mathcal{M} with rows, columns indexed by subsets of {1, .., n} of size $\leq D/2$ such that (1) \mathcal{M} obeys some linear constraints on its entries, and (2) $\mathcal{M} \geq 0$.

[BHKKMP '16] Recipe for average-case problems
1. Construct a candidate *M* via pseudocalibration
2. Decompose *M* into graph matrices and use the decomposition to prove *M* ≥ 0

Theorem [AMP '20]: Whp for all shapes β : let S be a minimum-weight vertex separator of the left and right sides of β ,

$$\|M_{eta}\| \leq \widetilde{O}(\sqrt{m}^{\# \circ ext{ not in S}} \cdot \sqrt{n}^{\# \ \square ext{ not in S}})$$

Some terms do have o(1) norm...

 $\|c_eta\|\cdot\|M_eta\|=\widetilde{\Omega}(1)$

Spiders

Def: a spider has two degree-1 squares in left side or right side adjacent to same circle

So the only large-norm shapes are the spiders.

Spiders

 $+\frac{1}{n}$

 \sim '

l =

0

It suffices to prove that \mathcal{M} is PSD on Null $(\mathcal{M})^{\perp}$ Spiders (the large-norm shapes) are approximately zero on Null $(\mathcal{M})^{\perp}$!

 \mathcal{M} \times

Theorem: There is \mathcal{M}' such that $x^T \mathcal{M} x = x^T \mathcal{M}' x$ for all $x \in \text{Null}(\mathcal{M})^{\perp}$ and all eigenvalues of \mathcal{M}' are 1±o(1)

Open Problems

Interpret Montanari's algorithm as rounding SoS? Average-case sparse MaxCut Improve PAP assumption $m \le n^{1.5}$ to $m \le n^2$ Improve SoS degree to n/log n

Proof outline

Reduce the SK problem to the Planted Boolean Vector problem [Mohanty-Raghavendra-Xu '19]

Consider the dual version of Planted Boolean Vector problem, which we term Planted Affine Planes (PAP)

Directly prove an SoS lower bound for PAP via the following steps

- 1. Construct a candidate solution using pseudocalibration
- 2. Prove positive-semidefiniteness of the candidate moment matrix M

The PSDness proof is the most innovative part of this work

Outline

- 1. The Sherrington-Kirkpatrick problem
- 2. Reduction to Planted Affine Planes
- 3. Pseudocalibration + graph matrices
- 4. PSD-ness sketch
- 5. Open Problems

The Sum-of-Squares hierarchy

Sum-of-Squares looks for a refutation proof of a system of polynomial constraints.

A degree-D pseudodistribution of solutions exists iff no degree-D SoS refutation exists In other words, SoS thinks the system is feasible.

Dual view: A series of convex relaxations to a polynomial program, parameterized by D, called degree of SoS.

Obtains state-of-the-art algorithms for many problems such as Max k-CSPs, Tensor PCA, etc.

Question restated: How do SoS relaxations for the Sherrington-Kirkpatrick problem perform?

SoS lower bounds for PAP

Main theorem restated: For $m \le n^{1.5 - \varepsilon}$, w.h.p. over d_1 , ..., $d_m \sim N(O, I_n)$, degree- n^{δ} SoS thinks this system of equations is feasible.

More concretely, given input $d_1, ..., d_m$ in \mathbb{R}^n , specify $\widetilde{\mathbb{E}}[v_1]$, $\widetilde{\mathbb{E}}[v_2v_4]$, etc., such that 1. $\widetilde{\mathbb{E}}[1] = 1$ and $\widetilde{\mathbb{E}}[\langle v, d_u \rangle^2] = \widetilde{\mathbb{E}}[1]$ for all u = 1, ..., m and other constraints.

2. $\widetilde{\mathbb{E}}[g^2] \ge 0$ for all polynomials of degree at most D/2. [Positivity condition]

Moment matrix: Matrix \mathcal{M} with rows, columns indexed by subsets of {1, ..., n} such that $\mathcal{M}[I, J] = \widetilde{\mathbb{E}}[v^{I} . v^{J}]$ for subsets I, J of {1, ..., n} of size $\leq D/2$ **Positivity condition:** $\mathcal{M} \geq 0$

Pseudocalibration

The pseudocalibration heuristic introduced by [BHKKMP '16] gives a candidate $\tilde{\mathbb{E}}$ that satisfies the constraints (approximately).

For any subset S
$$\subseteq$$
 [n], $\widetilde{\mathbb{E}}[v^S] = \sum_{lpha \in \mathbb{N}^{m imes n}} c_lpha h_lpha(d_1,\ldots,d_m)$

h_α - basis of Hermite polynomials c_α - real coefficients c_α = 0 unless α satisfies simple parity conditions, in which case, $c_{\alpha} \approx n^{-|\alpha|/2}$

Main difficulty: Checking the positivity condition $\mathcal{M} \geqslant 0$

Graph Matrices

Hermite polynomials on {d_u} are in 1-to-1 correspondence with \mathbb{N} -edge-labeled graphs on [m] \cup [n]

If we look at M, the same "Fourier shape" appears in lots of different entries M[I, J]. And in fact the coefficient c_{α} only depends on (1) the shape and (2) the sets I, J

Collect all such entries together into a matrix M_{β} encoded by a graph β

This will be a graph matrix.

Graph Matrices

Graph matrix [BHKKMP '16, AMP '20]: A graph matrix M_{β} is defined by a shape β = bipartite \mathbb{N} -edge-labeled graph with special subsets of vertices U, V. The matrix sums up all Hermite characters with the given shape.

Graph Matrices

Theorem [AMP '20]: W.h.p. for all shapes β : let S be a minimum-weight vertex separator of left and right sides of β ,

$$\|M_eta\| \leq \widetilde{O}(\sqrt{m}^{\# ext{ o not in S}} \cdot \sqrt{n}^{\#\, oxtschwarpi ext{ not in S}})$$

In fact, this is the only property of the random input that we need

Graph matrices are a "functional matrix algebra":

$$M_{\beta} \cdot M_{\gamma} = \sum_{\text{shapes } \beta'} c_{\beta'} M_{\beta'}$$

$$\bigcap (M_{\beta'}) = \bigcap_{\alpha \neq \beta} (M_{\beta'}) + \frac{1}{2} \bigcap_{\alpha \neq \beta}$$

Norm bounds:

$$\|M_{\beta}\| \leq \widetilde{O}(\sqrt{m^{\#^{O} \text{ not in } S}} \cdot \sqrt{n^{\#} \Box^{\text{ not in } S}}))$$
where S is a min-weight vertex separator of β

$$\mathcal{M} = \sum_{\text{shapes } \beta} c_{\beta} M_{\beta} = \sum_{\substack{\text{shapes } \beta:\\ \beta \text{ satisfies parity constraints}}} \prod_{O \in V(\beta)} h_{\deg(O)}(1) \cdot \frac{M_{\beta}}{n^{|E(\beta)|/2}}$$
Naive idea: show that $\sum_{\beta \neq \text{identity}} |c_{\beta}| ||M_{\beta}|| = o(1)$

Some terms do have o(1) norm...

$$egin{aligned} & egin{aligned} & egin\\ & egin{aligned} & egin{aligned} & egin{aligne$$

....but others do not

PSD-ness proof sketch

Non-identity terms with $\Omega(1)$ norm *must* exist because \mathcal{M} has a nontrivial null space Null space is induced by constraints " $\langle v, d_{\mu} \rangle^2 = 1$ "

After some simplifications, top row $= \widetilde{\mathbb{E}}[\langle v, d_u
angle^2 - 1]$

4. PSD-ness proof sketch

Certification

Certification problem: Given W ~ GOE(n), output an upper bound on max (x^T W x) over $x \in \{+1, -1\}^n$ that gets close to the true optimum whp.

Spectral certificate: Just output the maximum eigenvalue of W, which is $(2 + o(1)) n^{1.5}$ whp.

Can other certificates get closer to the true optimum, which is $\approx 1.52 \text{ n}^{1.5}$ whp?

In particular, the Sum-of-Squares hierarchy offers a natural series of convex relaxations for this problem.

Results on SoS for SK

```
Degree-2 SoS has value (2 - o(1)) n<sup>1.5</sup>
[Montanari-Sen '16]
```

```
Degree-4 SoS has value (2 - o(1))n<sup>1.5</sup>
[Mohanty-Raghavendra-Xu '20; Kunisky-Bandeira '19]
```

```
Degree-6 SoS has value (2 - o(1)) n<sup>1.5</sup>
[Kunisky '20]
```

This work: For some constant $\delta > 0$, whp degree-n^{δ} SoS still has value (2-o(1)) n^{1.5}

Rules out degree-O(1) SoS = polynomial time SoS

PSD-ness proof sketch

It suffices to prove that \mathcal{M} is PSD on Null $(\mathcal{M})^{\perp}$

Spiders approximately factor into a matrix with columns from Null(M)!

$$\approx \left(1 - \frac{1}{n} \right) \times \left($$

Thus spiders are approximately zero on Null $(\mathcal{M})^{\perp}$ $x^{\mathsf{T}} \mathcal{M} x \approx x^{\mathsf{T}} (\mathcal{M} - \text{spider}) x \text{ for all } x \in \text{Null}(\mathcal{M})^{\perp}$

Theorem: There is \mathcal{M}' such that $x^T \mathcal{M} x = x^T \mathcal{M}' x$ for all $x \in \text{Null}(\mathcal{M})^{\perp}$ and all eigenvalues of \mathcal{M}' are 1±0(1)

PSD-ness proof sketch

Due to \approx , killing a spider introduces smaller terms into the moment matrix $x^T \mathcal{M} x = x^T (\mathcal{M} - \text{spider} + \text{intersection terms}) x \text{ for all } x \in \text{Null}(\mathcal{M})^{\perp}$

Some of these may be smaller spiders!

Recursively kill these until only non-spiders remain

Theorem: For
$$c_{\beta}$$
' the new coefficients on non-spiders,

$$\sum_{\substack{\text{non-spider,}\\ \text{non-identity }\beta}} |c_{\beta}'| \cdot \|M_{\beta}\| = o(1)$$

Open Problems

Interpret Montanari's algorithm as rounding SoS? Average case sparse MaxCut Improve PAP assumption $m \le n^{1.5}$ to $m \le n^2$ Improve SoS degree to n/log n