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Introduction

Sherrington-Kirkpatrick (SK) problem: Given W& R"*" sampled from GOE(n), find the
maximum value of x" W x over x € {+1, -1}"

GOE(n): Gaussian Orthogonal Ensemble. A symmetric n x n matrix where the
off-diagonal entries are N(O, 1) and the diagonal entries are N(O, 2).

Important problem considered before in

e Computer Science - Can be viewed as average-case MaxCut on random graphs
where x encodes the partition

e Statistical Physics - Can be viewed as minimizing energy of a physical system,
where x encodes spin values in a spin-glass model
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Facts about SK

Define OPT(W) = max (xX"W x) over all x € {+1, -1}"

OPT(W) < (2 + o(1)) n'® whp over W ~ GOE(n), because W has maximum
eigenvalue (2 + o(1)) n%° whp

[Conjectured by Parisi ‘79, proved by Talagrand ’06]
OPT(W) =2 P*n'®=1.52 n">whp over W ~ GOE(n)

Here, P* is known as the Parisi constant
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Optimization vs Certification

Optimization problem: Given W ~ GOE(n), maximize x"W x over x € {+1, -1}"

Recently, a breakthrough result by Montanari provided a polynomial time optimization
algorithm for SK!

[Montanari “19] There is a poly(n, 1/€) time algorithm that w.h.p. outputs x € {+1, -1}"
satisfying x" W x = (2P* - €) n'° (under a statistical physics conjecture)

In this work, we are concerned with the certification problem:
Given W ~ GOE(n), output an upper bound on max (x" W x) over x € {+1, -1}" that gets
close to the true optimum whp.
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The Sum-of-Squares hierarchy

Sum-of-Squares is a powerful certification method for a polynomial objective/constraints.
The algorithm is parameterized by degree d, with larger d = more powerful SoS.

Main question: what bound can SoS certify for the SK problem?

[Montanari-Sen ‘16, Kunisky-Bandeira ‘19, Mohanty-Raghavendra-Xu 20, Kunisky ‘20]
Whp degree-6 SoS has value (2 - o(1)) n'®

[This work: For some constant & > O, whp degree-n® SoS still has value (2-o(1)) n'-° }

Rules out degree-O(1) SoS = polynomial time SoS
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Planted Affine Planes

Planted Affine Planes (PAP) problem: Let n < m. If d1, dm are random vectors in R"
sampled from N(O, In), can we prove that there is no vector v € R" such that (v, du>2 =1
forallu=1,2,.,m?

This work: For m =n'>“¢, w.h.p. overd, .. d_~N(O, | ), degree-n° SoS thinks this
system of equations is feasible.

Remainder of talk: SoS lower bound for PAP

2. Reduction to Planted Affine Planes



[BHKKMP "16] Recipe for SoS lower bounds

Goal for SoS lower bounds: Construct degree-D pseudodistribution of solutions,
specified by pseudomoments E[v®] for all subsets S of {1, ..., n} of size at most D.

Equivalently, construct a moment matrix M with rows,
columns indexed by subsets of {1, .., n} of size < D/2
such that (1) M obeys some linear constraints on its
entries, and (2) M > O.
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@HKKMP 16] Recipe for average-case problems
1. Construct a candidate M via pseudocalibration
2. Decompose M into graph matrices and use the
decomposition to prove M > O
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2. Reduction to Planted Affine Planes
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Graph matrix decomposition
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Graph matrix decomposition

M
M = Z CﬁMB - Z H hdeg(o nlE(;;l/2

shapes 3 — haliet}ﬁ - oeV(B)
Naive idea: show that )~ |es|l| Mg|| = o(1)
B#identity
Some terms do have o(1) norm... ....out others do not
sl - [[Mp]| = o(1) ca] - | Mgl = Q(1)

3. PSD-ness proof sketch



Spiders

Def: a spider has two degree-1 squares in left side or right side adjacent to same circle

Theorem: Z lcs| - || M5 = o(1)

non-spider,
non-identity g3

So the only large-norm shapes are the spiders.

3. PSD-ness proof sketch



Spiders

It suffices to prove that M is PSD on Null(M
Spiders (the large-norm shapes) are apprOX|mately zero on Null(M

M X(@Jo H)—O
@x@z@ox@{ez v o

Theorem: There is M’ such that x" M x = x" M’ x for all x € Null(M)*and all eigenvalues
of M’ are 1xo(1)

3. PSD-ness proof sketch



Open Problems

Interpret Montanari’s algorithm as rounding SoS?
Average-case sparse MaxCut

Improve PAP assumption m < n'> to m s n?
Improve SoS degree to n/log n

4. Open Problems



Proof outline
Reduce the SK problem to the Planted Boolean Vector problem
[Mohanty-Raghavendra-Xu ‘19]

Consider the dual version of Planted Boolean Vector problem, which we term
Planted Affine Planes (PAP)

Directly prove an SoS lower bound for PAP via the following steps
1. Construct a candidate solution using pseudocalibration
2. Prove positive-semidefiniteness of the candidate moment matrix M

The PSDness proof is the most innovative part of this work
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Outline

The Sherrington-Kirkpatrick problem
Reduction to Planted Affine Planes
Pseudocalibration + graph matrices

PSD-ness sketch
Open Problems



The Sum-of-Squares hierarchy

Sum-of-Squares looks for a refutation proof of a system of polynomial constraints.

A degree-D pseudodistribution of solutions exists iff no degree-D SoS refutation exists
In other words, SoS thinks the system is feasible.

Dual view: A series of convex relaxations to a polynomial program, parameterized
by D, called degree of SoS.

Obtains state-of-the-art algorithms for many problems such as Max k-CSPs,
Tensor PCA, etc.

Question restated: How do SoS relaxations for the Sherrington-Kirkpatrick
problem perform?
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SoS lower bounds for PAP

Main theorem restated: For m =n' "¢, w.h.p.overd, ..d_~N(O, 1), degree-n® SoS

thinks this system of equations is feasible.
More concretely, giveninputd,, .., d_in R", specify E[v.], E[v,v ], etc,, such that
1. E[11=1and E[v, du>2] = &[1] forallu =1, ..., m and other constraints.
2. E[g*] = O for all polynomials of degree at most D/2. [Positivity condition]
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Moment matrix: Matrix M with rows, columns indexed v

by subsets of {1, .., n} such that
M(I, |1 = E[V'. V] for subsets |, ] of {1, .., n} of size < D/2
Positivity condition: M > O o
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Pseudocalibration

The pseudocalibration heuristic introduced by [BHKKMP “16] gives a candidate E that
satisfies the constraints (approximately).

For any subset S < [n],]E[vS] = Z Coho(di, ... dn)
aeN™*"

h_ - basis of Hermite polynomials

c, - real coefficients

¢, = O unless a satisfies simple parity conditions, in which case, ¢, = nlol/2

Main difficulty: Checking the positivity condition M > O

3. Pseudocalibration + Graph Matrices



Graph Matrices

Hermite polynomials on {d } are in 1-to-1 correspondence with N-edge-labeled graphs
on [m] U [n] k

hi(dui)hi(duj)he(dur) <a— ﬁ\
i J

If we look at M, the same “Fourier shape” appears in lots of different entries M[l, J]]. And
in fact the coefficient C, only depends on (1) the shape and (2) the sets |, ]

Collect all such entries together into a matrix Mg encoded by a graph 3

This will be a graph matrix. Q—Q—O

3. Pseudocalibration + Graph Matrices




Graph Matrices

Graph matrix [BHKKMP ‘16, AMP 20]: A graph matrix Mg is defined by a shape 8 =
bipartite N-edge-labeled graph with special subsets of vertices U, V. The matrix sums

up all Hermite characters with the glven shape.
0k k1 g D—©<9 W
0
i1 0 0
Forf3 = @(e ,

Wil M;[{i, 3}, {k, 1}] = Zhl (dui)h1(du ;)b (dug )b (duy)
u=1
M = 3y I Pacero) @)
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Graph Matrices

-
Theorem [AMP 20]: W.h.p. for all shapes B: let S be a minimum-weight vertex
separator of left and right sides of j3,

=~ Onotin S notin S
L |Mp|| < O(ym”™" ™ . " O

In fact, this is the only property of the random input that we need

Graph matrices are a “functional matrix algebra”:

Mg - My = Z cg Mg

shapes /3
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Pseudocalibration + Graph Matrices



/Norm bounds:
| M| <
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PSD-ness proof sketch
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4. PSD-ness proof sketch
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PSD-ness proof sketch

Non-identity terms with Q(1) norm must exist because M has a nontrivial null space
Null space is induced by constraints “(v, d )2

M)

s 0
k 0
1
(1
o k.l rill O
hi(duk)ha(dug)
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After some simplifications, top row = E[(v, d,)? — 1]

4. PSD-ness proof sketch



Certification

Certification problem: Given W ~ GOE(n), output an upper bound on max (x" W x) over
x € {+1, -1}" that gets close to the true optimum whp.

Spectral certificate: Just output the maximum eigenvalue of W, which is (2 + o(1)) n'?
whp.
Can other certificates get closer to the true optimum, which is = 1.52 n'-> whp?

In particular, the Sum-of-Squares hierarchy offers a natural series of convex relaxations
for this problem.
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Results on SoS for SK

Degree-2 SoS has value (2 - o(1)) n'®
[Montanari-Sen “16]

Degree-4 SoS has value (2 - o(1))n"®
[Mohanty-Raghavendra-Xu ‘20; Kunisky-Bandeira “19]

Degree-6 SoS has value (2 - o(1)) n'-

[Kunisky 20]

[This work: For some constant & > O, whp degree-n® SoS still has value (2-o(1)) n'-° }

Rules out degree-O(1) SoS = polynomial time SoS
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PSD-ness proof sketch

It suffices to prove that M is PSD on Null(M)*
Spiders approximately factor into a matrix with columns from Null(M)!

Thus spiders are approximately zero on Null(M)*
X' Mx =x" (M - spider) x for all x € Null(M)*

Theorem: There is M’ such that x" M x = x" M’ x for all x € Null(M)*and all eigenvalues
of M’ are 1xo(1)

4. PSD-ness proof sketch



Due to = killing a spider introduces smaller terms into the moment matrix
X' Mx =x" (M - spider + intersection terms) x for all x € Null(M

PSD-ness proof sketch

Some of these may be smaller spiders!

Recursively kill these until only non-spiders remain / /
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