Sum-of-Squares Lower Bounds for

 Sherrington-Kirkpatrick via Planted Affine Planes
00

 \approx

 \approx

 $\left.O+\frac{1}{n} \square^{-} O\right)$
 100

Mrinalkanti Ghosh - TTIC
Fernando Granha Jeronimo - University of Chicago Chris Jones - University of Chicago
Aaron Potechin - University of Chicago Goutham Rajendran - University of Chicago

Introduction

Sherrington-Kirkpatrick (SK) problem: Given $W \in \mathbb{R}^{n \times n}$ sampled from $G O E(n)$, find the maximum value of $x^{\top} W x$ over $x \in\{+1,-1\}^{n}$

GOE(n): Gaussian Orthogonal Ensemble. A symmetric $\mathrm{n} \times \mathrm{n}$ matrix where the off-diagonal entries are $N(0,1)$ and the diagonal entries are $N(0,2)$.

Important problem considered before in

- Computer Science - Can be viewed as average-case MaxCut on random graphs where x encodes the partition
- Statistical Physics - Can be viewed as minimizing energy of a physical system, where x encodes spin values in a spin-glass model

Facts about SK

Define $\operatorname{OPT}(W)=\max \left(x^{\top} W x\right)$ over all $x \in\{+1,-1\}^{n}$
$\mathrm{OPT}(\mathrm{W}) \leq(2+\mathrm{o}(1)) \mathrm{n}^{1.5}$ whp over $\mathrm{W} \sim \mathrm{GOE}(\mathrm{n})$, because W has maximum eigenvalue $(2+o(1)) \mathrm{n}^{0.5} \mathrm{whp}$
[Conjectured by Parisi '79, proved by Talagrand '06] OPT $(\mathrm{W}) \approx 2 \mathrm{P}^{*} \mathrm{n}^{1.5} \approx 1.52 \mathrm{n}^{1.5}$ whp over $\mathrm{W} \sim$ GOE(n)

Here, P^{*} is known as the Parisi constant

Optimization vs Certification

Optimization problem: Given $W \sim \operatorname{GOE}(\mathrm{n})$, maximize $\mathrm{x}^{\top} \mathrm{W}$ x over $\mathrm{x} \in\{+1,-1\}^{\mathrm{n}}$
Recently, a breakthrough result by Montanari provided a polynomial time optimization algorithm for SK!
[Montanari '19] There is a poly $(\mathrm{n}, 1 / \varepsilon)$ time algorithm that w.h.p. outputs $\mathrm{x} \in\{+1,-1\}^{n}$ satisfying $x^{\top} W x \geq\left(2 P^{*}-\varepsilon\right) n^{1.5}$ (under a statistical physics conjecture)

In this work, we are concerned with the certification problem:
Given $\mathrm{W} \sim \operatorname{GOE}(\mathrm{n})$, output an upper bound on $\max \left(\mathrm{x}^{\top} \mathrm{W} x\right.$) over $x \in\{+1,-1\}^{n}$ that gets close to the true optimum whp.

The Sum-of-Squares hierarchy

Sum-of-Squares is a powerful certification method for a polynomial objective/constraints.
The algorithm is parameterized by degree d , with larger $\mathrm{d}=$ more powerful SoS.
Main question: what bound can SoS certify for the SK problem?
[Montanari-Sen ‘16, Kunisky-Bandeira '19, Mohanty-Raghavendra-Xu '20, Kunisky '20] Whp degree- 6 SoS has value (2-o(1)) n ${ }^{1.5}$

This work: For some constant $\delta>0$, whp degree $-\mathrm{n}^{\delta}$ SoS still has value (2-o(1)) $\mathrm{n}^{1.5}$
Rules out degree-O(1) SoS = polynomial time SoS

Planted Affine Planes

Planted Affine Planes (PAP) problem: Let $\mathrm{n} \ll \mathrm{m}$. If $\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{m}}$ are random vectors in R^{n} sampled from $N\left(0, I_{n}\right)$, can we prove that there is no vector $v \in R^{n}$ such that $\left\langle v, d_{u}\right\rangle^{2}=1$ for all $u=1,2, . ., m$?

This work: For $m \leq n^{1.5-\varepsilon}$, w.h.p. over $d_{1}, \ldots d_{m} \sim N\left(0, I_{n}\right)$, degree $-n^{\delta}$ SoS thinks this system of equations is feasible.

Remainder of talk: SoS lower bound for PAP

[BHKKMP '16] Recipe for SoS lower bounds

Goal for SoS lower bounds: Construct degree-D pseudodistribution of solutions, specified by pseudomoments $\widetilde{\mathbb{E}}\left[\mathrm{V}^{\mathrm{S}}\right]$ for all subsets S of $\{1, \ldots, \mathrm{n}\}$ of size at most D .

Equivalently, construct a moment matrix \mathcal{M} with rows, columns indexed by subsets of $\{1, \ldots, n\}$ of size $\leq D / 2$ such that (1) \mathcal{M} obeys some linear constraints on its entries, and (2) $\mathcal{M} \geqslant 0$.

1. Construct a candidate \mathcal{M} via pseudocalibration
2. Decompose \mathcal{M} into graph matrices and use the decomposition to prove $\mathcal{M} \geqslant 0$

Graph matrix decomposition

$$
\mathcal{M}=\sum_{\text {shapes } \beta} c_{\beta} M_{\beta}=\sum_{\substack{\text { shapes } \beta: \\ \beta \text { satisfies parity constraints }}} \prod_{O \in V(\beta)} h_{\operatorname{deg}(\circ)}(1) \cdot \frac{M_{\beta}}{n^{|E(\beta)| / 2}}
$$

Theorem [AMP '20]: Whp for all shapes β : let S be a minimum-weight vertex separator of the left and right sides of β,

$$
\left\|M_{\beta}\right\| \leq \widetilde{O}\left(\sqrt{m^{\# O} \text { not in } \mathrm{S}} \cdot \sqrt{n}^{\# \square^{\text {not in } \mathrm{S}}}\right)
$$

Graph matrix decomposition

$$
\mathcal{M}=\sum_{\text {shapes } \beta} c_{\beta} M_{\beta}=\sum_{\substack{\text { shapes } \beta: \\ \beta \text { satisfies parity constraints }}} \prod_{O \in V(\beta)} h_{\operatorname{deg}(O)}(1) \cdot \frac{M_{\beta}}{n^{|E(\beta)| / 2}}
$$

Naive idea: show that $\sum\left|c_{\beta}\right|\left\|M_{\beta}\right\|=o(1)$
$\beta \neq$ identity

Some terms do have o(1) norm...

....but others do not

$\left|c_{\beta}\right| \cdot\left\|M_{\beta}\right\|=\widetilde{\Omega}(1)$

Spiders

Def: a spider has two degree-1 squares in left side or right side adjacent to same circle

So the only large-norm shapes are the spiders.

Spiders

It suffices to prove that \mathcal{M} is PSD on $\operatorname{Null}(\mathcal{M})^{\perp}$ Spiders (the large-norm shapes) are approximately zero on $\operatorname{Null}(\mathcal{M})^{\perp}$!

Theorem: There is \mathcal{M}^{\prime} such that $\mathrm{x}^{\top} \mathcal{M} \mathrm{x}=\mathrm{x}^{\top} \mathcal{M}^{\prime} \mathrm{x}$ for all $\mathrm{x} \in \operatorname{Null}(\mathcal{M})^{\perp}$ and all eigenvalues of \mathcal{M}^{\prime} are 1 ± 0 (1)

Open Problems

Interpret Montanari's algorithm as rounding SoS? Average-case sparse MaxCut Improve PAP assumption $\mathrm{m} \leq \mathrm{n}^{1.5}$ to $\mathrm{m} \leq \mathrm{n}^{2}$ Improve SoS degree to $n / \log n$

Proof outline

Reduce the SK problem to the Planted Boolean Vector problem [Mohanty-Raghavendra-Xu '19]

Consider the dual version of Planted Boolean Vector problem, which we term Planted Affine Planes (PAP)

Directly prove an SoS lower bound for PAP via the following steps

1. Construct a candidate solution using pseudocalibration
2. Prove positive-semidefiniteness of the candidate moment matrix M

The PSDness proof is the most innovative part of this work

Outline

1. The Sherrington-Kirkpatrick problem
2. Reduction to Planted Affine Planes
3. Pseudocalibration + graph matrices
4. PSD-ness sketch
5. Open Problems

The Sum-of-Squares hierarchy

Sum-of-Squares looks for a refutation proof of a system of polynomial constraints. A degree-D pseudodistribution of solutions exists iff no degree-D SoS refutation exists In other words, SoS thinks the system is feasible.

Dual view: A series of convex relaxations to a polynomial program, parameterized by D, called degree of SoS.

Obtains state-of-the-art algorithms for many problems such as Max k-CSPs, Tensor PCA, etc.

Question restated: How do SoS relaxations for the Sherrington-Kirkpatrick problem perform?

SoS lower bounds for PAP

Main theorem restated: For $m \leq n^{1.5-\varepsilon}$, w.h.p. over $d_{1}, \ldots, d_{m} \sim N\left(O, I_{n}\right)$, degree- n^{δ} SoS thinks this system of equations is feasible.
More concretely, given input $d_{1}, . ., d_{m}$ in R^{n}, specify $\widetilde{\mathbb{E}}\left[v_{1}\right], \widetilde{\mathbb{E}}\left[v_{2} v_{4}\right]$, etc., such that

1. $\widetilde{\mathbb{E}}[1]=1$ and $\widetilde{\mathbb{E}}\left[\left\langle v, d_{u}\right\rangle^{2}\right]=\widetilde{\mathbb{E}}[1]$ for all $u=1, \ldots, m$ and other constraints.
2. $\widetilde{\mathbb{E}}\left[g^{2}\right] \geq 0$ for all polynomials of degree at most $\mathrm{D} / 2$. [Positivity condition]

Moment matrix: Matrix \mathcal{M} with rows, columns indexed by subsets of $\{1, . ., n\}$ such that $\mathcal{M}[I, J]=\widetilde{\mathbb{E}}\left[\mathrm{V}^{\prime} . \mathrm{v}^{\prime}\right]$ for subsets I, J of $\{1, \ldots, \mathrm{n}\}$ of size $\leq \mathrm{D} / 2$ Positivity condition: $\mathcal{M} \geqslant 0$

Pseudocalibration

The pseudocalibration heuristic introduced by [BHKKMP '16] gives a candidate $\widetilde{\mathbb{E}}$ that satisfies the constraints (approximately).

For any subset $\mathrm{S} \subseteq[\mathrm{n}], \widetilde{\mathbb{E}}\left[v^{S}\right]=\sum_{\alpha \in \mathbb{N}^{m \times n}} c_{\alpha} h_{\alpha}\left(d_{1}, \ldots, d_{m}\right)$
h_{α} - basis of Hermite polynomials
c_{α} - real coefficients
$\mathrm{c}_{\alpha}=\mathrm{O}$ unless α satisfies simple parity conditions, in which case, $c_{\alpha} \approx n^{-|\alpha| / 2}$

Main difficulty: Checking the positivity condition $\mathcal{M} \geqslant 0$

Graph Matrices

Hermite polynomials on $\left\{\mathrm{d}_{\mathrm{u}}\right\}$ are in 1 -to-1 correspondence with \mathbb{N}-edge-labeled graphs on $[\mathrm{m}] \cup[\mathrm{n}]$

$$
h_{1}\left(d_{u, i}\right) h_{1}\left(d_{u, j}\right) h_{2}\left(d_{u, k}\right)
$$

If we look at \mathcal{M}, the same "Fourier shape" appears in lots of different entries $\mathcal{M}[I, J]$. And in fact the coefficient c_{α} only depends on (1) the shape and (2) the sets I, J

Collect all such entries together into a matrix M_{β} encoded by a graph β
This will be a graph matrix.

Graph Matrices

Graph matrix [BHKKMP '16, AMP '20]: A graph matrix M_{β} is defined by a shape $\beta=$ bipartite \mathbb{N}-edge-labeled graph with special subsets of vertices U, V. The matrix sums up all Hermite characters with the given shape.

Graph Matrices

Theorem [AMP '20]: W.h.p. for all shapes β : let S be a minimum-weight vertex separator of left and right sides of β,

$$
\left\|M_{\beta}\right\| \leq \widetilde{O}\left(\sqrt{m}^{\# \mathrm{O} \text { notin } \mathrm{S}} \cdot \sqrt{n}^{\# \square^{\text {not in } \mathrm{S}}}\right)
$$

In fact, this is the only property of the random input that we need
Graph matrices are a "functional matrix algebra":

$$
M_{\beta} \cdot M_{\gamma}=\sum_{\text {shapes } \beta^{\prime}} c_{\beta^{\prime}} M_{\beta^{\prime}}
$$

Norm bounds:
$\left\|M_{\beta}\right\| \leq$
$\widetilde{O}\left(\sqrt{m}^{\# \mathrm{O} \text { not in S }} \cdot \sqrt{n}^{\#} \square^{\text {not in S }}\right)$ where S is a min-weight vertex separator of β

PSD-ness proof sketch

Naive idea: show that $\sum\left|c_{\beta}\right|\left\|M_{\beta}\right\|=o(1)$

$$
\beta \neq \text { identity }
$$

Some terms do have o(1) norm...

....but others do not

$$
\begin{aligned}
& \left|c_{\beta}\right| \cdot\left\|M_{\beta}\right\|=O\left(1 / n^{2}\right) \cdot \widetilde{O}\left(n^{2}\right) \\
& =\widetilde{\Omega}(1)
\end{aligned}
$$

PSD-ness proof sketch

Non-identity terms with $\Omega(1)$ norm must exist because \mathcal{M} has a nontrivial null space Null space is induced by constraints " $\left\langle v, d_{u}\right\rangle^{2}=1$ "

)

After some simplifications, top row $\left.=\widetilde{\mathbb{E}}\left[v, d_{u}\right\rangle^{2}-1\right]$

Certification

Certification problem: Given W ~ GOE(n), output an upper bound on max ($\mathrm{x}^{\top} \mathrm{W} \mathrm{x}$) over $x \in\{+1,-1\}^{n}$ that gets close to the true optimum whp.
Spectral certificate: Just output the maximum eigenvalue of W , which is $(2+o(1)) \mathrm{n}^{1.5}$ whp.
Can other certificates get closer to the true optimum, which is $\approx 1.52 \mathrm{n}^{1.5} \mathrm{whp}$?
In particular, the Sum-of-Squares hierarchy offers a natural series of convex relaxations for this problem.

Results on SoS for SK

```
Degree- 2 SoS has value ( \(2-\mathrm{o}(1)) \mathrm{n}^{1.5}\)
[Montanari-Sen "16]
Degree-4 SoS has value (2-o(1)) n \({ }^{1.5}\)
[Mohanty-Raghavendra-Xu '20; Kunisky-Bandeira '19]
Degree-6 SoS has value (2-o(1)) \(\mathrm{n}^{1.5}\)
[Kunisky '20]
```

This work: For some constant $\delta>0$, whp degree- $\mathrm{n}^{\bar{\delta}}$ SoS still has value $(2-o(1)) \mathrm{n}^{1.5}$
Rules out degree-O(1) SoS = polynomial time SoS

PSD-ness proof sketch

It suffices to prove that \mathcal{M} is PSD on $\operatorname{Null}(\mathcal{M})^{\perp}$ Spiders approximately factor into a matrix with columns from $\operatorname{Null}(\mathcal{M})$!

Thus spiders are approximately zero on $\operatorname{Null}(\mathcal{M})^{\perp}$

$$
\mathrm{x}^{\top} \mathcal{M} \mathrm{x} \approx \mathrm{x}^{\top}(\mathcal{M}-\text { spider }) \mathrm{x} \text { for all } \mathrm{x} \in \operatorname{Null}(\mathcal{M})^{\perp}
$$

Theorem: There is \mathcal{M}^{\prime} such that $\mathrm{x}^{\top} \mathcal{M} \mathrm{x}=\mathrm{x}^{\top} \mathcal{M}^{\prime} \mathrm{x}$ for all $\mathrm{x} \in \operatorname{Null}(\mathcal{M})^{\perp}$ and all eigenvalues of \mathcal{M}^{\prime} are 1 ± 0 (1)

PSD-ness proof sketch

Due to \approx, killing a spider introduces smaller terms into the moment matrix

$$
x^{\top} \mathcal{M} x=x^{\top}(\mathcal{M} \text { - spider }+ \text { intersection terms }) x \text { for all } x \in \operatorname{Null}(\mathcal{M})^{\perp}
$$

Some of these may be smaller spiders!

Recursively kill these until only non-spiders remain

Theorem: For c_{β} ' the new coefficients on non-spiders,

$$
\sum_{\substack{\text { non-spider, }}}\left|c_{\beta}^{\prime}\right| \cdot\left\|M M_{\beta}\right\|=O(1)
$$

Open Problems

Interpret Montanari's algorithm as rounding SoS?
Average case sparse MaxCut Improve PAP assumption $m \leq n^{1.5}$ to $m \leq n^{2}$ Improve SoS degree to $n / \log n$

