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Introduction
Sherrington-Kirkpatrick (SK) problem: Given W∈ ℝn x n sampled from GOE(n), find the 
maximum value of xT W x over x ∈ {+1, -1}n

GOE(n): Gaussian Orthogonal Ensemble. A symmetric n x n matrix where the 
off-diagonal entries are N(0, 1) and the diagonal entries are N(0, 2).

Important problem considered before in

● Computer Science - Can be viewed as average-case MaxCut on random graphs 
where x encodes the partition

● Statistical Physics - Can be viewed as minimizing energy of a physical system, 
where x encodes spin values in a spin-glass model

1. The Sherrington-Kirkpatrick problem



Facts about SK
Define OPT(W) = max (xT W x) over all x ∈ {+1, -1}n

OPT(W) ≤ (2 + o(1)) n1.5 whp over W ~ GOE(n), because W has maximum 
eigenvalue (2 + o(1)) n0.5 whp

[Conjectured by Parisi ’79, proved by Talagrand ’06]
OPT(W) ≈ 2 P* n1.5 ≈ 1.52 n1.5 whp over W ~ GOE(n)

Here, P* is known as the Parisi constant
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Optimization vs Certification
Optimization problem: Given W ~ GOE(n), maximize xT W x over x ∈ {+1, -1}n

Recently, a breakthrough result by Montanari provided a polynomial time optimization 
algorithm for SK!

[Montanari ‘19] There is a poly(n, 1/ε) time algorithm that w.h.p. outputs x ∈ {+1, -1}n 
satisfying xT W x ≥ (2P* - ε) n1.5 (under a statistical physics conjecture)

In this work, we are concerned with the certification problem:
Given W ~ GOE(n), output an upper bound on max (xT W x) over x ∈ {+1, -1}n that gets 
close to the true optimum whp.
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The Sum-of-Squares hierarchy
Sum-of-Squares is a powerful certification method for a polynomial objective/constraints.

Main question: what bound can SoS certify for the SK problem?

1. The Sherrington-Kirkpatrick problem

The algorithm is parameterized by degree d, with larger d = more powerful SoS.

[Montanari-Sen ‘16, Kunisky-Bandeira ‘19, Mohanty-Raghavendra-Xu ‘20, Kunisky ‘20] 
Whp degree-6 SoS has value (2 - o(1)) n1.5 

This work: For some constant δ > 0, whp degree-nδ SoS still has value (2-o(1)) n1.5

Rules out degree-O(1) SoS = polynomial time SoS



Planted Affine Planes
Planted Affine Planes (PAP) problem: Let n ≪ m. If d1, …, dm are random vectors in Rn 

sampled from N(0, In), can we prove that there is no vector v ∈ Rn such that ⟨v, du⟩
2 = 1 

for all u = 1, 2, .., m?

This work: For m ≤ n1.5 - ε, w.h.p. over d1, .., dm ~ N(0, In), degree-nδ SoS thinks this 
system of equations is feasible.

Remainder of talk: SoS lower bound for PAP

       2. Reduction to Planted Affine Planes



[BHKKMP ’16] Recipe for SoS lower bounds
Goal for SoS lower bounds: Construct degree-D pseudodistribution of solutions, 
specified by pseudomoments     [vS] for all subsets S of {1, …, n} of size at most D.

       2. Reduction to Planted Affine Planes

Equivalently, construct a moment matrix 𝓜 with rows, 
columns indexed by subsets of {1, .., n} of size ≤ D/2 
such that (1) 𝓜 obeys some linear constraints on its 
entries, and (2) 𝓜 ≽ 0.

[BHKKMP ‘16] Recipe for average-case problems
1. Construct a candidate 𝓜 via pseudocalibration
2. Decompose 𝓜 into graph matrices and use the 
decomposition to prove 𝓜 ≽ 0



Graph matrix decomposition

Identity matrices on diagonal: ∅ ,               , 

∅

       4. PSD-ness proof sketch

Theorem [AMP ‘20]: Whp for all shapes β: let S be a minimum-weight vertex separator 
of the left and right sides of β,



Graph matrix decomposition

Naive idea: show that 

Some terms do have o(1) norm…
       

….but others do not

       3. PSD-ness proof sketch



Spiders
Def: a spider has two degree-1 squares in left side or right side adjacent to same circle

Theorem:

So the only large-norm shapes are the spiders.

       3. PSD-ness proof sketch



Spiders
It suffices to prove that 𝓜 is PSD on Null(𝓜)⟂

Theorem: There is 𝓜’ such that xT 𝓜 x = xT 𝓜’ x for all x ∈ Null(𝓜)⟂ and all eigenvalues 
of 𝓜’ are 1±o(1)

Spiders (the large-norm shapes) are approximately zero on Null(𝓜)⟂!

       3. PSD-ness proof sketch

𝓜



Open Problems

Interpret Montanari’s algorithm as rounding SoS?
Average-case sparse MaxCut
Improve PAP assumption m ≤ n1.5 to m ≤ n2

Improve SoS degree to n/log n

       4. Open Problems



Proof outline
Reduce the SK problem to the Planted Boolean Vector problem 
[Mohanty-Raghavendra-Xu ‘19]

Consider the dual version of Planted Boolean Vector problem, which we term 
Planted Affine Planes (PAP)

Directly prove an SoS lower bound for PAP via the following steps
1. Construct a candidate solution using pseudocalibration
2. Prove positive-semidefiniteness of the candidate moment matrix M

The PSDness proof is the most innovative part of this work
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Outline

1. The Sherrington-Kirkpatrick problem
2. Reduction to Planted Affine Planes
3. Pseudocalibration + graph matrices
4. PSD-ness sketch
5. Open Problems



The Sum-of-Squares hierarchy
Sum-of-Squares looks for a refutation proof of a system of polynomial constraints.

A degree-D pseudodistribution of solutions exists iff no degree-D SoS refutation exists
In other words, SoS thinks the system is feasible.

Dual view: A series of convex relaxations to a polynomial program, parameterized 
by D, called degree of SoS.

Obtains state-of-the-art algorithms for many problems such as Max k-CSPs, 
Tensor PCA, etc.

Question restated: How do SoS relaxations for the Sherrington-Kirkpatrick 
problem perform?
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SoS lower bounds for PAP
Main theorem restated: For m ≤ n1.5 - ε, w.h.p. over d1, .., dm ~ N(0, In), degree-nδ SoS 
thinks this system of equations is feasible.

Moment matrix: Matrix 𝓜 with rows, columns indexed 
by subsets of {1, .., n} such that
𝓜[I, J] =     [vI . vJ] for subsets I, J of {1, .., n} of size ≤ D/2

Positivity condition: 𝓜 ≽ 0

More concretely, given input d1, .., dm in Rn, specify     [v1],     [v2v4], etc., such that
1.     [1] = 1 and     [⟨v, du⟩

2] =     [1] for all u = 1, …, m and other constraints.
2.     [g2] ≥ 0 for all polynomials of degree at most D/2. [Positivity condition]

       2. Reduction to Planted Affine Planes



hα - basis of Hermite polynomials
cα - real coefficients
cα = 0 unless α satisfies simple parity conditions, in which case,

Pseudocalibration
The pseudocalibration heuristic introduced by [BHKKMP ‘16] gives a candidate      that 
satisfies the constraints (approximately).

For any subset S ⊆ [n],

Main difficulty: Checking the positivity condition 𝓜 ≽ 0

       3. Pseudocalibration + Graph Matrices



Graph Matrices

If we look at 𝓜, the same “Fourier shape” appears in lots of different entries 𝓜[I, J]. And 
in fact the coefficient cα only depends on (1) the shape and (2) the sets I, J

Collect all such entries together into a matrix Mβ encoded by a graph β

This will be a graph matrix.

Hermite polynomials on {du} are in 1-to-1 correspondence with ℕ-edge-labeled graphs 
on [m] ∪ [n]

       3. Pseudocalibration + Graph Matrices



Graph Matrices
Graph matrix [BHKKMP ‘16, AMP ‘20]: A graph matrix Mβ is defined by a shape β = 
bipartite ℕ-edge-labeled graph with special subsets of vertices U, V. The matrix sums 
up all Hermite characters with the given shape.

  ,             ,    ,

For β =           ,



Graph Matrices
Theorem [AMP ‘20]: W.h.p. for all shapes β: let S be a minimum-weight vertex 
separator of left and right sides of β,

In fact, this is the only property of the random input that we need

Graph matrices are a “functional matrix algebra”:

       3. Pseudocalibration + Graph Matrices



PSD-ness proof sketch

Naive idea: show that 

Some terms do have o(1) norm…
       

….but others do not

Norm bounds:

where S is a min-weight vertex 
separator of β

       4. PSD-ness proof sketch



PSD-ness proof sketch
Non-identity terms with Ω(1) norm must exist because 𝓜 has a nontrivial null space
Null space is induced by constraints “⟨v, du⟩

2 = 1”
   

𝓜

After some simplifications, top row
       4. PSD-ness proof sketch



Certification
Certification problem: Given W ~ GOE(n), output an upper bound on max (xT W x) over 
x ∈ {+1, -1}n that gets close to the true optimum whp.

Spectral certificate: Just output the maximum eigenvalue of W, which is (2 + o(1)) n1.5 
whp.

Can other certificates get closer to the true optimum, which is ≈ 1.52 n1.5 whp?

In particular, the Sum-of-Squares hierarchy offers a natural series of convex relaxations 
for this problem.
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Results on SoS for SK
Degree-2 SoS has value (2 - o(1)) n1.5 
[Montanari-Sen ‘16]

Degree-4 SoS has value (2 - o(1))n1.5 
[Mohanty-Raghavendra-Xu ‘20; Kunisky-Bandeira ‘19]

Degree-6 SoS has value (2 - o(1)) n1.5  
[Kunisky ‘20]

This work: For some constant δ > 0, whp degree-nδ SoS still has value (2-o(1)) n1.5

Rules out degree-O(1) SoS = polynomial time SoS
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PSD-ness proof sketch
It suffices to prove that 𝓜 is PSD on Null(𝓜)⟂

Thus spiders are approximately zero on Null(𝓜)⟂
xT 𝓜 x ≈ xT (𝓜 - spider) x for all x ∈ Null(𝓜)⟂

Theorem: There is 𝓜’ such that xT 𝓜 x = xT 𝓜’ x for all x ∈ Null(𝓜)⟂ and all eigenvalues 
of 𝓜’ are 1±o(1)

Spiders approximately factor into a matrix with columns from Null(𝓜)!

       4. PSD-ness proof sketch



PSD-ness proof sketch
Due to ≈, killing a spider introduces smaller terms into the moment matrix

xT 𝓜 x = xT (𝓜 - spider + intersection terms) x for all x ∈ Null(𝓜)⟂ 

Some of these may be smaller spiders!

Recursively kill these until only non-spiders remain

Theorem: For cβ’ the new coefficients on
non-spiders,

       4. PSD-ness proof sketch



Open Problems

Interpret Montanari’s algorithm as rounding SoS?
Average case sparse MaxCut
Improve PAP assumption m ≤ n1.5 to m ≤ n2

Improve SoS degree to n/log n

       5. Open Problems


