# Spherical Discrepancy Minimization and Algorithmic Lower Bounds for Covering the Sphere

**Chris Jones** 

Based on joint work with Matt McPartlon



The University of Chicago

January 6, 2020

# Outline

Introduction

**Our Algorithm** 

**Applications to Covering Problems** 

**Open Problems** 

# Outline

#### Introduction

**Our Algorithm** 

**Applications to Covering Problems** 

**Open Problems** 

# The Spherical Discrepancy Problem

#### **Spherical Discrepancy Problem**

Given unit vectors  $u_1, \ldots, u_m \in S^n$ , find  $x \in S^n$  which minimizes  $\max_i \langle u_i, x \rangle$ .

Think of m = poly(n) or  $m = 2^{\sqrt{n}}$ . If m < n, OPT  $\leq 0$  by Gaussian elimination.

Solving exactly (or even approximately) is NP-hard.

We look for a good output **independent of the true optimum**.



# The Spherical Discrepancy Problem

#### **Spherical Discrepancy Problem**

Given unit vectors  $u_1,\ldots,u_m\in S^n$ , find  $x\in S^n$  which minimizes  $\max_i \left\langle u_i,x \right\rangle.$ 

Think of m = poly(n) or  $m = 2^{\sqrt{n}}$ . If m < n, OPT  $\leq 0$  by Gaussian elimination.

Solving exactly (or even approximately) is NP-hard.

We look for a good output **independent of the true optimum**.



Baseline algorithm: random choice of x.

 $x \in_{\mathsf{R}} S^n$  implies  $\langle u_i, x \rangle \approx 1/\sqrt{n}$ . We will normalize to  $||x||_2 = \sqrt{n}$ .

Exponential-time, practical algorithm given by Petković et al

### Motivation: The Boolean Discrepancy Problem

Given a collection of subsets of [n], color [n] red or blue so that each set is as balanced as possible (minimize the "discrepancy" between red and blue).



# Motivation: The Boolean Discrepancy Problem

Given a collection of subsets of [n], color [n] red or blue so that each set is as balanced as possible (minimize the "discrepancy" between red and blue).

**Reframing:** let  $v_i$  be the 0/1 indicator of the *i*-th set. Find  $x \in {\pm 1}^n$  which minimizes

$$\max_{i} |\langle v_i, x \rangle|$$



# Motivation: The Boolean Discrepancy Problem

Given a collection of subsets of [n], color [n] red or blue so that each set is as balanced as possible (minimize the "discrepancy" between red and blue).

**Reframing:** let  $v_i$  be the 0/1 indicator of the *i*-th set. Find  $x \in {\pm 1}^n$  which minimizes

$$\max_{i} |\langle v_i, x \rangle|$$



#### **Boolean Discrepancy Problem**

Given unit vectors  $u_1, \ldots, u_m \in S^n$ , find  $x \in \{\pm 1\}^n$  which minimizes  $\max_i |\langle u_i, x \rangle|$ 

# Spherical Discrepancy ProblemGiven unit vectors $u_1, \ldots, u_m \in S^n$ ,find x s.t. $||x||_2 = \sqrt{n}$ which minimizesmax $\langle u_i, x \rangle$ .

The absolute value sign is essentially ignorable.

#### Algorithms for Boolean and Spherical Discrepancy

Given unit vectors  $u_1,\ldots,u_m\in S^n,$  find x which minimizes  $\max_{i\in[m]}\left\langle u_i,x\right\rangle$ 

(m = O(n))

|                                           | $x \in \{\pm 1\}^n$                                                        | $\ x\ _2 = \sqrt{n}$          |
|-------------------------------------------|----------------------------------------------------------------------------|-------------------------------|
| Random <i>x</i>                           | $O(\sqrt{\log n})$                                                         | $O\left(\sqrt{\log n}\right)$ |
| Partial coloring<br>[S'85, LM'12, LRR'16] | $O(1)$ when $u_{i,j} \in \{rac{-1}{\sqrt{n}}, 0, rac{\pm 1}{\sqrt{n}}\}$ | <i>O</i> (1)                  |
| Kómlos conj.                              | <i>O</i> (1)                                                               |                               |

 $(m \gg n)$ 

|                  | $x \in \{\pm 1\}^n$                                                                           | $\ x\ _2 = \sqrt{n}$                     |
|------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|
| Random <i>x</i>  | $O(\sqrt{\log m})$                                                                            | $O(\sqrt{\log m})$                       |
| Partial coloring | $O(\sqrt{\log \frac{m}{n}})$ when $u_{i,j} \in \{rac{-1}{\sqrt{n}}, 0, rac{+1}{\sqrt{n}}\}$ | $O(\sqrt{\log \frac{m}{n}})$             |
| This work        |                                                                                               | $\sqrt{2\ln \frac{m}{n}}(1+\varepsilon)$ |

Spherical Discrepancy Minimization

# **Our Algorithm**

#### Theorem

Given unit vectors  $u_1, \ldots, u_m \in \mathbb{R}^n$  and  $m \ge 16n$ , there is a poly(m, n) deterministic alg. outputting a vector x with  $||x||_2 = \sqrt{n}$  satisfying, for all i,

$$\langle u_i, x \rangle \leq \sqrt{2 \ln \frac{m}{n}} \cdot \left(1 + O\left(\frac{1}{\log \frac{m}{n}}\right)\right)$$

Compare to  $O\left(\sqrt{\log \frac{m}{n}}\right)$  from the partial coloring technique.

# **Our Algorithm**

#### Theorem

Given unit vectors  $u_1, \ldots, u_m \in \mathbb{R}^n$  and  $m \ge 16n$ , there is a poly(m, n) deterministic alg. outputting a vector x with  $||x||_2 = \sqrt{n}$  satisfying, for all i,

$$\langle u_i, x \rangle \leq \sqrt{2 \ln \frac{m}{n}} \cdot \left(1 + O\left(\frac{1}{\log \frac{m}{n}}\right)\right)$$

Compare to  $O\left(\sqrt{\log \frac{m}{n}}\right)$  from the partial coloring technique. This is nearly the optimal bound in the "large cap regime":

#### Theorem [Böröczky-Winters '03]

For every choice of  $2^{-o(\sqrt{n})} < \delta < \frac{1}{n^2}$ , there is a set of  $m \approx 1/\delta$  unit vectors  $u_1, \ldots, u_m \in S^n$  such that, for any x with  $||x_2|| = \sqrt{n}$  there is a  $u_i$  with

$$\langle u_i, x \rangle \geq \sqrt{2 \ln \frac{m}{n}} \cdot \left(1 - O\left(\frac{1}{\sqrt{\log \frac{m}{n}}}\right)\right)$$

# Outline

Introduction

#### **Our Algorithm**

**Applications to Covering Problems** 

**Open Problems** 

# **Our Algorithm**

Technique: adapt a deterministic Multiplicative Weight Update algorithm for partial coloring due to [Levy-Ramadas-Rothvoss '18]

MWU for Spherical Discrepancy **Input:** unit vectors  $u_1, \ldots, u_m \in S^n$  $x \leftarrow 0^n$  $w_i \leftarrow \exp(-\lambda^2)$ for t = 1, ..., T:  $I \leftarrow \{i : w_i > 2\}$  $P \leftarrow \{x\} \cup \{\sum_i w_i u_i\} \cup \{u_i : i \in I\}$  $M \leftarrow \sum_{i \notin I} w_i u_i u_i^{\mathsf{T}}$  $y \leftarrow \text{minimizer of } y^{\mathsf{T}} M y \text{ among } S^n \cap P^{\perp}$  $x \leftarrow x + \delta y$ for i = 1, ..., m:  $w_i \leftarrow w_i \cdot \exp(\lambda \langle u_i, \delta y \rangle) \cdot \rho$ return x

Parameters:

$$\lambda = \sqrt{\ln \frac{m}{n}}, \quad \delta = \frac{1}{n^3}, \quad T = \frac{2n}{\delta^2}, \quad \rho = \exp\left(\frac{-\delta^2 \lambda^2}{2n} \cdot (1 + \lambda \delta n)\right)$$

Spherical Discrepancy Minimization

# Outline

#### Introduction

#### **Our Algorithm**

#### **Applications to Covering Problems**

**Open Problems** 

#### A Geometric Question

A spherical cap is a set of the form  $\{x \in S^n : \langle x, p \rangle \ge \cos \theta\}.$ 

The *fractional size* of a spherical cap C is  $\delta = \operatorname{vol}(C)/\operatorname{vol}(S^n)$ .



Fix a parameter  $\delta = \delta(n) \in (0, 1/2)$ . How many spherical caps of fractional size  $\delta$  are required to cover  $S^n$ ?

# A Geometric Question

A spherical cap is a set of the form  $\{x \in S^n : \langle x, p \rangle \ge \cos \theta\}.$ 

The *fractional size* of a spherical cap C is  $\delta = \operatorname{vol}(C)/\operatorname{vol}(S^n)$ .



Fix a parameter  $\delta = \delta(n) \in (0, 1/2)$ . How many spherical caps of fractional size  $\delta$  are required to cover  $S^n$ ?

Call  $m = m(n, \delta)$  the minimum number.

**Trivial volume bound:** need at least  $m \cdot \delta \ge 1$ . This could only be obtained if the caps could be perfectly disjoint, which is impossible.

 $\frac{\text{Conjecture}}{m \cdot \delta \ge \Omega(n)}$ 

True if  $\delta = \Omega(1)$  [Lusternik-Schnirelman theorem] True if  $\delta \leq n^{-n/2+o(n)}$  [Coxeter-Few-Rogers '59]

#### **Algorithmic Lower Bounds**

Fix a parameter  $\delta = \delta(n) \in (0, 1/2)$ . How many spherical caps of fractional size  $\delta$  are required to cover  $S^n$ ?

#### Theorem

If *m* spherical caps of size 
$$2^{-o(\sqrt{n})} \le \delta < 1/2$$
 cover  $S^n$ , then  
 $m \cdot \delta \ge \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)$ 

#### **Algorithmic Lower Bounds**

Fix a parameter  $\delta = \delta(n) \in (0, 1/2)$ . How many spherical caps of fractional size  $\delta$  are required to cover  $S^n$ ?

#### Theorem

If *m* spherical caps of size 
$$2^{-o(\sqrt{n})} \le \delta < 1/2$$
 cover  $S^n$ , then
$$m \cdot \delta \ge \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)$$

**Proof idea:** Given a small set of poles  $u_1, \ldots, u_m \in S^n$ , run the Spherical Discrepancy algorithm to produce  $x \in S^n$  which is far away from the  $u_i$ ,

$$\langle u_i, x \rangle < \sqrt{\frac{2 \ln \frac{m}{n}}{n}} \cdot \left(1 + O\left(\frac{1}{\log \frac{m}{n}}\right)\right)$$

x is not in caps  $\{y \in S^n : \langle y, u_i \rangle \ge \mathsf{RHS}\}$ . Solve for  $\cos \theta = \mathsf{RHS}$  and then for  $\delta$  corresponding to  $\theta$ .

A halfspace is a set of the form  $\{x \in \mathbb{R}^n : \langle x, u \rangle \ge L\}$  where  $u \in S^n$ .

The Gaussian measure of a halfspace H is  $Pr_{X \sim N(0,I)}[X \in H]$ .

Fix a parameter  $\delta = \delta(n)$ . How many halfspaces of Gaussian measure  $\delta$  are required to 1/2 cover an *n*-dimensional Gaussian random variable?

A halfspace is a set of the form  $\{x \in \mathbb{R}^n : \langle x, u \rangle \ge L\}$  where  $u \in S^n$ .

The Gaussian measure of a halfspace H is  $Pr_{X \sim N(0,I)}[X \in H]$ .

Fix a parameter  $\delta = \delta(n)$ . How many halfspaces of Gaussian measure  $\delta$  are required to 1/2 cover an *n*-dimensional Gaussian random variable?

Trivial volume bound:  $m \cdot \delta \ge 1/2$ .

TheoremIf m halfspaces of Gaussian measure  $\delta < \frac{1}{2}$  cover the  $\sqrt{n}$ -sphere in  $\mathbb{R}^n$ ,then $m \cdot \delta \ge \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)$ 

# TheoremIf m halfspaces of Gaussian measure $\delta < \frac{1}{2}$ cover the $\sqrt{n}$ -sphere in $\mathbb{R}^n$ ,then $m \cdot \delta \ge \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)$

#### Theorem

If *m* halfspaces of Gaussian measure  $\delta < \frac{1}{2}$  cover the  $\sqrt{n}$ -sphere in  $\mathbb{R}^n$ , then  $m \cdot \delta \ge \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)$ 

**Proof:** Given a small set of poles  $u_1, \ldots, u_m \in S^n$ , run the Spherical Discrepancy algorithm to produce x with  $||x||_2 = \sqrt{n}$  which is far away from the  $u_i$ ,

$$\langle u_i, x \rangle < \sqrt{2 \ln \frac{m}{n}} \cdot \left(1 + O\left(\frac{1}{\log \frac{m}{n}}\right)\right)$$

x is not in halfspaces  $\{y\in \mathbb{R}^n: \langle y, u_i\rangle \geq \mathsf{RHS}\}$  which have Gaussian measure

$$\delta \approx \exp(-(\mathsf{RHS})^2/2)/\mathsf{RHS} = \Omega\left(rac{n}{m\cdot\sqrt{\log rac{m}{n}}}
ight)$$

#### When is a halfspace approximately a cap?



#### When is a halfspace approximately a cap?



Lemma (large cap regime)

As long as  $\operatorname{vol}(\mathcal{C}) \geq 2^{-o(\sqrt{n})}$ , then  $\operatorname{vol}(\mathcal{C}) \sim \gamma(\mathcal{H})$ .

# Outline

Introduction

**Our Algorithm** 

**Applications to Covering Problems** 

**Open Problems** 

#### **Open Problems**

 $\mathsf{Hypercube} \to \mathsf{Hypersphere} \ \mathsf{Relaxation}$ 

**Strategy** to solve a problem  $\max_{x \in \{\pm 1\}^n} f(x)$ :

(1) Relax the problem to  $\max_{x \in \sqrt{n}\text{-sphere}} f(x)$ 

(2) Optimally solve the relaxed problem.

(3) Smartly round the solution to  $\{-1, +1\}^n$ .

#### Question

Are there non-degree-2 f which can be attacked using this strategy?

#### Other problems:

- For δ < 2<sup>-√n</sup>, we have no nontrivial lower bound! Does the algorithm achieve anything here or is it inherently "Gaussian"?
- Chromatic number of the spherical distance graph {(x, y) ∈ (S<sup>n</sup>, S<sup>n</sup>) : ⟨x, y⟩ ≤ cos θ}.
- Brownian motion algorithm?
- Improve the  $(1 + \varepsilon)$  error term to remove the  $\sqrt{\log \frac{m}{n}}$  factor.

# Thank you!



### Open Problem #1: Improve the Error Bounds

#### Theorem

Given unit vectors  $u_1, \ldots, u_m \in \mathbb{R}^n$  and  $m \ge 16n$ , there is a poly(m, n) deterministic algorithm that outputs a vector x satisfying

$$\langle u_i, x \rangle \leq \sqrt{\frac{2\ln \frac{m}{n}}{n}} \cdot \left(1 + O\left(\frac{1}{\log \frac{m}{n}}\right)\right)$$

#### Conjecture

The inner product can be improved to

$$\langle u_i, x \rangle \leq \sqrt{\frac{2 \ln \frac{m}{n}}{n}} \cdot \left(1 - \frac{\ln \ln \frac{m}{n}}{4 \ln \frac{m}{n}} + O\left(\frac{1}{\log \frac{m}{n}}\right)\right)$$

This would remove the log factor from the  $\Omega\left(\frac{n}{\sqrt{\log(1+\frac{m}{n})}}\right)$  covering density lower bound.

For  $\delta < 2^{-\sqrt{n}}$ , we had no bounds at all! Can we improve the analysis of the MWU algorithm to get a nontrivial bound here?

Spherical Discrepancy Minimization

# **Open Problem #2: Nonlinear Functions**

A spherical cap is a halfspace in  $S^n$ . Can we strengthen the analysis to sets that are slightly nonlinear?

Define a distance graph in spherical space  $S_{\geq \theta}^n$  by taking edges between points at angle at least  $\theta$ .

An independent set in this graph is a set with diameter  $\leq \theta$ .

The chromatic number of this graph is finite; reasonable color classes are spherical caps of angular diameter  $\theta$ .

#### Conjecture

For every  $\theta$ ,  $\chi(S_{\geq \theta}^n) \geq \Omega(m_{n,\theta})$  where  $m_{n,\theta}$  is the minimum number of spheres of diameter  $\theta$  needed to cover  $S^n$ .

# **Open Problem #3: Hypercube** → **Hypersphere Relaxation**

**Strategy** to solve a problem  $\max_{x \in \{\pm 1\}^n} f(x)$ :

- (1) Relax the problem to  $\max_{x \in \sqrt{n}$ -sphere f(x)
- (2) Optimally solve the relaxed problem.
- (3) Smartly round the solution to  $\{-1, +1\}^n$ .

#### Question

What combinatorial optimization problems can be solved by relaxing  $\{+1,-1\}^n$  to the  $\sqrt{n}\text{-sphere}?$ 

Spectral algorithms apply this strategy to f = degree-2 polynomial. Can any non-degree-2 polynomial be solved this way?

#### Hardness of Approximation



A C-approximation is an algorithm which on an instance with value OPT outputs an x with value at most  $C \cdot \text{OPT}$ .

Is it possible that a polynomial time (1 +  $\varepsilon$ )-approximation exists for any fixed desired accuracy  $\varepsilon$ ?

#### Hardness of Approximation



A C-approximation is an algorithm which on an instance with value OPT outputs an x with value at most  $C \cdot \text{OPT}$ .

Is it possible that a polynomial time  $(1 + \varepsilon)$ -approximation exists for any fixed desired accuracy  $\varepsilon$ ?

#### Theorem

There is a constant C > 1 so that it is NP-hard to C-approximate Spherical Discrepancy.

Proof idea: Gap-preserving gadget reduction from MAX NAE-3-SAT.