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The Spherical Discrepancy Problem

Spherical Discrepancy Problem
Given unit vectors u1, . . . , um ∈ Sn, find x ∈ Sn which minimizes

max
i
〈ui , x〉 .

Think of m = poly(n) or m = 2
√
n.

If m < n, OPT ≤ 0 by Gaussian elimination.

Solving exactly (or even approximately) is NP-hard.

We look for a good output independent of the true
optimum.

Baseline algorithm: random choice of x .

x ∈R Sn implies 〈ui , x〉 ≈ 1/
√
n. We will normalize to ‖x‖2 =

√
n.

Exponential-time, practical algorithm given by Petković et al

Spherical Discrepancy Minimization
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Motivation: The Boolean Discrepancy Problem
Given a collection of subsets of [n],
color [n] red or blue so that each set is
as balanced as possible (minimize the
“discrepancy” between red and blue).

Reframing: let vi be the 0/1 indicator
of the i-th set. Find x ∈ {±1}n which
minimizes

max
i
|〈vi , x〉|

Boolean Discrepancy Problem
Given unit vectors u1, . . . , um ∈ Sn,
find x ∈ {±1}n which minimizes

max
i
|〈ui , x〉|

Spherical Discrepancy Problem
Given unit vectors u1, . . . , um ∈ Sn,
find x s.t. ‖x‖2 =

√
n which minimizes

max
i
〈ui , x〉 .

The absolute value sign is essentially ignorable.

Spherical Discrepancy Minimization
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Algorithms for Boolean and Spherical Discrepancy

Given unit vectors u1, . . . , um ∈ Sn, find x which minimizes
max
i∈[m]
〈ui , x〉

(m = O(n))
x ∈ {±1}n ‖x‖2 =

√
n

Random x O(
√

log n) O
(√

log n
)

Partial coloring
[S’85, LM’12, LRR’16]

O(1)
when ui,j ∈ {−1√

n
, 0, +1√

n
} O(1)

Kómlos conj. O(1)

(m� n)
x ∈ {±1}n ‖x‖2 =

√
n

Random x O(
√

logm) O(
√

logm)

Partial coloring
O(
√

log m
n )

when ui,j ∈ {−1√
n
, 0, +1√

n
} O(

√
log m

n )

This work
√

2 ln m
n (1 + ε)

Spherical Discrepancy Minimization
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Our Algorithm

Theorem
Given unit vectors u1, . . . , um ∈ Rn and m ≥ 16n, there is a poly(m, n)
deterministic alg. outputting a vector x with ‖x‖2 =

√
n satisfying,

for all i ,

〈ui , x〉 ≤
√

2 ln
m

n
·
(
1 + O

(
1

log m
n

))

Compare to O
(√

log m
n

)
from the partial coloring technique.

This is nearly the optimal bound in the “large cap regime”:

Theorem [Böröczky-Winters ’03]
For every choice of 2−o(

√
n) < δ < 1

n2 , there is a set of m ≈ 1/δ unit
vectors u1, . . . , um ∈ Sn such that, for any x with ‖x2‖ =

√
n there is

a ui with

〈ui , x〉 ≥
√

2 ln
m

n
·

(
1− O

(
1√

log m
n

))

Spherical Discrepancy Minimization
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Our Algorithm
Technique: adapt a deterministic Multiplicative Weight Update
algorithm for partial coloring due to [Levy-Ramadas-Rothvoss ’18]

MWU for Spherical Discrepancy

Input: unit vectors u1, . . . , um ∈ Sn

x ← 0n

wi ← exp(−λ2)
for t = 1, . . . ,T :

I ← {i : wi ≥ 2}
P ← {x} ∪ {

∑
i wiui} ∪ {ui : i ∈ I}

M ←
∑

i /∈I wiuiu
ᵀ
i

y ← minimizer of yᵀMy among Sn ∩ P⊥

x ← x + δy
for i = 1, . . . ,m:

wi ← wi · exp(λ 〈ui , δy〉) · ρ
return x

Parameters:
λ =

√
ln m

n , δ = 1
n3 , T = 2n

δ2 , ρ = exp
(
−δ2λ2

2n · (1 + λδn)
)

Spherical Discrepancy Minimization
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A Geometric Question

A spherical cap is a set of the form
{x ∈ Sn : 〈x , p〉 ≥ cos θ}.

The fractional size of a spherical cap C is
δ = vol(C )/ vol(Sn).

Fix a parameter δ = δ(n) ∈ (0, 1/2). How many spherical caps of
fractional size δ are required to cover Sn?

Call m = m(n, δ) the minimum number.

Trivial volume bound: need at least m · δ ≥ 1. This could only be
obtained if the caps could be perfectly disjoint, which is impossible.

Conjecture
m · δ ≥ Ω(n)

True if δ = Ω(1) [Lusternik-Schnirelman theorem]
True if δ ≤ n−n/2+o(n) [Coxeter-Few-Rogers ‘59]

Spherical Discrepancy Minimization
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Algorithmic Lower Bounds

Fix a parameter δ = δ(n) ∈ (0, 1/2). How many spherical caps of
fractional size δ are required to cover Sn?

Theorem
If m spherical caps of size 2−o(

√
n) ≤ δ < 1/2 cover Sn, then

m · δ ≥ Ω

(
n√

log m
n

)

Proof idea: Given a small set of poles u1, . . . um ∈ Sn, run the Spherical
Discrepancy algorithm to produce x ∈ Sn which is far away from the ui ,

〈ui , x〉 <
√

2 ln m
n

n
·
(
1 + O

(
1

log m
n

))
x is not in caps {y ∈ Sn : 〈y , ui 〉 ≥ RHS}.
Solve for cos θ = RHS and then for δ corresponding to θ.

Spherical Discrepancy Minimization



Introduction Our Algorithm Applications to Covering Problems Open Problems

Algorithmic Lower Bounds

Fix a parameter δ = δ(n) ∈ (0, 1/2). How many spherical caps of
fractional size δ are required to cover Sn?

Theorem
If m spherical caps of size 2−o(

√
n) ≤ δ < 1/2 cover Sn, then

m · δ ≥ Ω

(
n√

log m
n

)

Proof idea: Given a small set of poles u1, . . . um ∈ Sn, run the Spherical
Discrepancy algorithm to produce x ∈ Sn which is far away from the ui ,

〈ui , x〉 <
√

2 ln m
n

n
·
(
1 + O

(
1

log m
n

))
x is not in caps {y ∈ Sn : 〈y , ui 〉 ≥ RHS}.
Solve for cos θ = RHS and then for δ corresponding to θ.

Spherical Discrepancy Minimization



Introduction Our Algorithm Applications to Covering Problems Open Problems

Gaussian Covering Problem

A halfspace is a set of the form {x ∈ Rn : 〈x , u〉 ≥ L} where u ∈ Sn.

The Gaussian measure of a halfspace H is PrX∼N(0,I )[X ∈ H].

Fix a parameter δ = δ(n). How many halfspaces of Gaussian measure δ
are required to 1/2 cover an n-dimensional Gaussian random variable?

Trivial volume bound: m · δ ≥ 1/2.

Theorem
If m halfspaces of Gaussian measure δ < 1

2 cover the
√
n-sphere in Rn,

then
m · δ ≥ Ω

(
n√

log m
n

)

Spherical Discrepancy Minimization
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√
n-sphere in Rn,

then
m · δ ≥ Ω

(
n√

log m
n

)

Proof: Given a small set of poles u1, . . . um ∈ Sn, run the Spherical
Discrepancy algorithm to produce x with ‖x‖2 =

√
n which is far away

from the ui ,

〈ui , x〉 <
√

2 ln
m

n
·
(
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(
1

log m
n

))
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n

m ·
√

log m
n
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When is a halfspace approximately a cap?

Theorem
Ifm halfspaces of Gaussian measure
δ < 1

2 cover the
√
n-sphere in Rn,

m · δ ≥ Ω

(
n√

log m
n

)
Theorem
If m spherical caps of size
2−o(

√
n) ≤ δ < 1/2 cover Sn, then

m · δ ≥ Ω

(
n√

log m
n

)

H = {x ∈ Rn : 〈x , p〉 ≥
√
n cos θ}

≈
C = {x ∈ Sn : 〈x , p〉 ≥ cos θ}

Lemma (large cap regime)
As long as vol(C ) ≥ 2−o(

√
n), then vol(C ) ∼ γ(H).

Spherical Discrepancy Minimization
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Open Problems
Hypercube → Hypersphere Relaxation

Strategy to solve a problem maxx∈{±1}n f (x):
(1) Relax the problem to maxx∈

√
n-sphere f (x)

(2) Optimally solve the relaxed problem.
(3) Smartly round the solution to {−1,+1}n.

Question
Are there non-degree-2 f which can be attacked using this strategy?

Other problems:
I For δ < 2−

√
n, we have no nontrivial lower bound! Does the

algorithm achieve anything here or is it inherently “Gaussian”?
I Chromatic number of the spherical distance graph
{(x , y) ∈ (Sn,Sn) : 〈x , y〉 ≤ cos θ}.

I Brownian motion algorithm?
I Improve the (1 + ε) error term to remove the

√
log m

n factor.

Spherical Discrepancy Minimization
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Thank you!

Thank you!
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Open Problem #1: Improve the Error Bounds

Theorem
Given unit vectors u1, . . . , um ∈ Rn and m ≥ 16n, there is a poly(m, n)
deterministic algorithm that outputs a vector x satisfying

〈ui , x〉 ≤
√

2 ln m
n

n
·
(
1 + O

(
1

log m
n

))
Conjecture
The inner product can be improved to

〈ui , x〉 ≤
√

2 ln m
n

n
·
(
1−

ln ln m
n

4 ln m
n

+ O

(
1

log m
n

))

This would remove the log factor from the Ω

(
n√

log(1+m
n )

)
covering

density lower bound.

For δ < 2−
√
n, we had no bounds at all! Can we improve the analysis of

the MWU algorithm to get a nontrivial bound here?
Spherical Discrepancy Minimization
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Open Problem #2: Nonlinear Functions

A spherical cap is a halfspace in Sn. Can we strengthen the analysis to
sets that are slightly nonlinear?

Define a distance graph in spherical space Sn
≥θ by taking edges between

points at angle at least θ.

An independent set in this graph is a set with diameter ≤ θ.

The chromatic number of this graph is finite; reasonable color classes are
spherical caps of angular diameter θ.

Conjecture
For every θ, χ(Sn

≥θ) ≥ Ω(mn,θ) where mn,θ is the minimum number of
spheres of diameter θ needed to cover Sn.

Spherical Discrepancy Minimization



Introduction Our Algorithm Applications to Covering Problems Open Problems

Open Problem #3: Hypercube→ Hypersphere Relaxation

Strategy to solve a problem maxx∈{±1}n f (x):

(1) Relax the problem to maxx∈
√
n-sphere f (x)

(2) Optimally solve the relaxed problem.
(3) Smartly round the solution to {−1,+1}n.

Question
What combinatorial optimization problems can be solved by relaxing
{+1,−1}n to the

√
n-sphere?

Spectral algorithms apply this strategy to f = degree-2 polynomial. Can
any non-degree-2 polynomial be solved this way?

Spherical Discrepancy Minimization
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Hardness of Approximation

Spherical Discrepancy Problem
Given unit vectors u1, . . . , um ∈ Sn, compute

min
x∈Sn

max
i
〈ui , x〉 .

A C -approximation is an algorithm which on an instance with value OPT
outputs an x with value at most C · OPT.

Is it possible that a polynomial time (1 + ε)-approximation exists for any
fixed desired accuracy ε?

Theorem
There is a constant C > 1 so that it is NP-hard to C -approximate
Spherical Discrepancy.

Proof idea: Gap-preserving gadget reduction from MAX NAE-3-SAT.

Spherical Discrepancy Minimization
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