Spherical Discrepancy Minimization and Algorithmic Lower Bounds for Covering the Sphere

Chris Jones

Based on joint work with Matt McPartlon

The University of Chicago

January 6, 2020

Outline

Introduction

Our Algorithm

Applications to Covering Problems

Open Problems

Outline

Introduction

Our Algorithm

Applications to Covering Problems

Open Problems

The Spherical Discrepancy Problem

Spherical Discrepancy Problem

Given unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$, find $x \in S^{n}$ which minimizes

$$
\max _{i}\left\langle u_{i}, x\right\rangle .
$$

Think of $m=\operatorname{poly}(n)$ or $m=2^{\sqrt{n}}$.
If $m<n$, OPT ≤ 0 by Gaussian elimination.
Solving exactly (or even approximately) is NP-hard.
We look for a good output independent of the true
 optimum.

The Spherical Discrepancy Problem

Spherical Discrepancy Problem

Given unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$, find $x \in S^{n}$ which minimizes

$$
\max _{i}\left\langle u_{i}, x\right\rangle .
$$

Think of $m=\operatorname{poly}(n)$ or $m=2^{\sqrt{n}}$.
If $m<n$, OPT ≤ 0 by Gaussian elimination.
Solving exactly (or even approximately) is NP-hard.
We look for a good output independent of the true
 optimum.

Baseline algorithm: random choice of x.
$x \in_{R} S^{n}$ implies $\left\langle u_{i}, x\right\rangle \approx 1 / \sqrt{n}$. We will normalize to $\|x\|_{2}=\sqrt{n}$.
Exponential-time, practical algorithm given by Petković et al

Motivation: The Boolean Discrepancy Problem

Given a collection of subsets of $[n]$, color [n] red or blue so that each set is as balanced as possible (minimize the "discrepancy" between red and blue).

Motivation: The Boolean Discrepancy Problem

Given a collection of subsets of [n], color [n] red or blue so that each set is as balanced as possible (minimize the "discrepancy" between red and blue).

Reframing: let v_{i} be the $0 / 1$ indicator of the i-th set. Find $x \in\{ \pm 1\}^{n}$ which minimizes

$$
\max _{i}\left|\left\langle v_{i}, x\right\rangle\right|
$$

Motivation: The Boolean Discrepancy Problem

Given a collection of subsets of $[n]$, color [n] red or blue so that each set is as balanced as possible (minimize the "discrepancy" between red and blue).

Reframing: let v_{i} be the $0 / 1$ indicator of the i-th set. Find $x \in\{ \pm 1\}^{n}$ which minimizes

$$
\max _{i}\left|\left\langle v_{i}, x\right\rangle\right|
$$

Boolean Discrepancy Problem

Given unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$, find $x \in\{ \pm 1\}^{n}$ which minimizes

$$
\max _{i}\left|\left\langle u_{i}, x\right\rangle\right|
$$

Spherical Discrepancy Problem
Given unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$, find x s.t. $\|x\|_{2}=\sqrt{n}$ which minimizes $\max _{i}\left\langle u_{i}, x\right\rangle$.

The absolute value sign is essentially ignorable.

Algorithms for Boolean and Spherical Discrepancy

Given unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$, find x which minimizes

$$
\max _{i \in[m]}\left\langle u_{i}, x\right\rangle
$$

$(m=O(n))$

	$x \in\{ \pm 1\}^{n}$	$\\|x\\|_{2}=\sqrt{n}$
Random x	$O(\sqrt{\log n})$	$O(\sqrt{\log n})$
Partial coloring	$O(1)$	$O(1)$
[S'85, LM'12, LRR'16]	when $u_{i, j} \in\left\{\frac{-1}{\sqrt{n}}, 0, \frac{+1}{\sqrt{n}}\right\}$	
Kómlos conj.	$O(1)$	

$(m \gg n)$

	$x \in\{ \pm 1\}^{n}$	$\\|x\\|_{2}=\sqrt{n}$
Random x	$O(\sqrt{\log m})$	$O(\sqrt{\log m})$
Partial coloring	$O\left(\sqrt{\log \frac{m}{n}}\right)$	
when $u_{i, j} \in\left\{\frac{-1}{\sqrt{n}}, 0, \frac{+1}{\sqrt{n}}\right\}$	$O\left(\sqrt{\log \frac{m}{n}}\right)$	
This work		$\sqrt{2 \ln \frac{m}{n}}(1+\varepsilon)$

Our Algorithm

Theorem

Given unit vectors $u_{1}, \ldots, u_{m} \in \mathbb{R}^{n}$ and $m \geq 16 n$, there is a poly (m, n) deterministic alg. outputting a vector x with $\|x\|_{2}=\sqrt{n}$ satisfying, for all i,

$$
\left\langle u_{i}, x\right\rangle \leq \sqrt{2 \ln \frac{m}{n}} \cdot\left(1+O\left(\frac{1}{\log \frac{m}{n}}\right)\right)
$$

Compare to $O\left(\sqrt{\log \frac{m}{n}}\right)$ from the partial coloring technique.

Our Algorithm

Theorem

Given unit vectors $u_{1}, \ldots, u_{m} \in \mathbb{R}^{n}$ and $m \geq 16 n$, there is a poly (m, n) deterministic alg. outputting a vector x with $\|x\|_{2}=\sqrt{n}$ satisfying, for all i,

$$
\left\langle u_{i}, x\right\rangle \leq \sqrt{2 \ln \frac{m}{n}} \cdot\left(1+O\left(\frac{1}{\log \frac{m}{n}}\right)\right)
$$

Compare to $O\left(\sqrt{\log \frac{m}{n}}\right)$ from the partial coloring technique. This is nearly the optimal bound in the "large cap regime":

Theorem [Böröczky-Winters '03]

For every choice of $2^{-o(\sqrt{n})}<\delta<\frac{1}{n^{2}}$, there is a set of $m \approx 1 / \delta$ unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$ such that, for any x with $\left\|x_{2}\right\|=\sqrt{n}$ there is a u_{i} with

$$
\left\langle u_{i}, x\right\rangle \geq \sqrt{2 \ln \frac{m}{n}} \cdot\left(1-O\left(\frac{1}{\sqrt{\log \frac{m}{n}}}\right)\right)
$$

Outline

Introduction

Our Algorithm

Applications to Covering Problems

Open Problems

Our Algorithm

Technique: adapt a deterministic Multiplicative Weight Update algorithm for partial coloring due to [Levy-Ramadas-Rothvoss '18]

MWU for Spherical Discrepancy

Input: unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$
$x \leftarrow 0^{n}$
$w_{i} \leftarrow \exp \left(-\lambda^{2}\right)$
for $t=1, \ldots, T$:
$I \leftarrow\left\{i: w_{i} \geq 2\right\}$
$P \leftarrow\{x\} \cup\left\{\sum_{i} w_{i} u_{i}\right\} \cup\left\{u_{i}: i \in I\right\}$
$M \leftarrow \sum_{i \notin\rfloor} w_{i} u_{i} u_{i}^{\top}$
$y \leftarrow$ minimizer of $y^{\top} M y$ among $S^{n} \cap P^{\perp}$
$x \leftarrow x+\delta y$
for $i=1, \ldots, m$:
$w_{i} \leftarrow w_{i} \cdot \exp \left(\lambda\left\langle u_{i}, \delta y\right\rangle\right) \cdot \rho$
return x
Parameters:
$\lambda=\sqrt{\ln \frac{m}{n}}, \quad \delta=\frac{1}{n^{3}}, \quad T=\frac{2 n}{\delta^{2}}, \quad \rho=\exp \left(\frac{-\delta^{2} \lambda^{2}}{2 n} \cdot(1+\lambda \delta n)\right)$

Outline

Introduction

Our Algorithm

Applications to Covering Problems

Open Problems

A Geometric Question

A spherical cap is a set of the form $\left\{x \in S^{n}:\langle x, p\rangle \geq \cos \theta\right\}$.

The fractional size of a spherical cap C is $\delta=\operatorname{vol}(C) / \operatorname{vol}\left(S^{n}\right)$.

Fix a parameter $\delta=\delta(n) \in(0,1 / 2)$. How many spherical caps of fractional size δ are required to cover S^{n} ?

A Geometric Question

A spherical cap is a set of the form $\left\{x \in S^{n}:\langle x, p\rangle \geq \cos \theta\right\}$.

The fractional size of a spherical cap C is $\delta=\operatorname{vol}(C) / \operatorname{vol}\left(S^{n}\right)$.

Fix a parameter $\delta=\delta(n) \in(0,1 / 2)$. How many spherical caps of fractional size δ are required to cover S^{n} ?

Call $m=m(n, \delta)$ the minimum number.
Trivial volume bound: need at least $m \cdot \delta \geq 1$. This could only be obtained if the caps could be perfectly disjoint, which is impossible.

Conjecture

$m \cdot \delta \geq \Omega(n)$

True if $\delta=\Omega(1)$ [Lusternik-Schnirelman theorem] True if $\delta \leq n^{-n / 2+o(n)}$ [Coxeter-Few-Rogers '59]

Algorithmic Lower Bounds

Fix a parameter $\delta=\delta(n) \in(0,1 / 2)$. How many spherical caps of fractional size δ are required to cover S^{n} ?

Theorem

If m spherical caps of size $2^{-o(\sqrt{n})} \leq \delta<1 / 2$ cover S^{n}, then

$$
m \cdot \delta \geq \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)
$$

Algorithmic Lower Bounds

Fix a parameter $\delta=\delta(n) \in(0,1 / 2)$. How many spherical caps of fractional size δ are required to cover S^{n} ?

Theorem

If m spherical caps of size $2^{-o(\sqrt{n})} \leq \delta<1 / 2$ cover S^{n}, then

$$
m \cdot \delta \geq \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)
$$

Proof idea: Given a small set of poles $u_{1}, \ldots u_{m} \in S^{n}$, run the Spherical Discrepancy algorithm to produce $x \in S^{n}$ which is far away from the u_{i},

$$
\left\langle u_{i}, x\right\rangle<\sqrt{\frac{2 \ln \frac{m}{n}}{n}} \cdot\left(1+O\left(\frac{1}{\log \frac{m}{n}}\right)\right)
$$

x is not in caps $\left\{y \in S^{n}:\left\langle y, u_{i}\right\rangle \geq R H S\right\}$.
Solve for $\cos \theta=$ RHS and then for δ corresponding to θ.

Gaussian Covering Problem

A halfspace is a set of the form $\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \geq L\right\}$ where $u \in S^{n}$.
The Gaussian measure of a halfspace H is $\operatorname{Pr}_{X \sim N(0, l)}[X \in H]$.
Fix a parameter $\delta=\delta(n)$. How many halfspaces of Gaussian measure δ are required to $1 / 2$ cover an n-dimensional Gaussian random variable?

Gaussian Covering Problem

A halfspace is a set of the form $\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \geq L\right\}$ where $u \in S^{n}$.
The Gaussian measure of a halfspace H is $\operatorname{Pr}_{X \sim N(0, l)}[X \in H]$.
Fix a parameter $\delta=\delta(n)$. How many halfspaces of Gaussian measure δ are required to $1 / 2$ cover an n-dimensional Gaussian random variable?

Trivial volume bound: $m \cdot \delta \geq 1 / 2$.

Theorem

If m halfspaces of Gaussian measure $\delta<\frac{1}{2}$ cover the \sqrt{n}-sphere in \mathbb{R}^{n}, then

$$
m \cdot \delta \geq \Omega\left(\frac{n^{2}}{\sqrt{\log \frac{m}{n}}}\right)
$$

Gaussian Covering Problem

Theorem

If m halfspaces of Gaussian measure $\delta<\frac{1}{2}$ cover the \sqrt{n}-sphere in \mathbb{R}^{n}, then

$$
m \cdot \delta \geq \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)
$$

Gaussian Covering Problem

Theorem

If m halfspaces of Gaussian measure $\delta<\frac{1}{2}$ cover the \sqrt{n}-sphere in \mathbb{R}^{n}, then

$$
m \cdot \delta \geq \Omega\left(\frac{n^{2}}{\sqrt{\log \frac{m}{n}}}\right)
$$

Proof: Given a small set of poles $u_{1}, \ldots u_{m} \in S^{n}$, run the Spherical Discrepancy algorithm to produce x with $\|x\|_{2}=\sqrt{n}$ which is far away from the u_{i},

$$
\left\langle u_{i}, x\right\rangle<\sqrt{2 \ln \frac{m}{n}} \cdot\left(1+O\left(\frac{1}{\log \frac{m}{n}}\right)\right)
$$

x is not in halfspaces $\left\{y \in \mathbb{R}^{n}:\left\langle y, u_{i}\right\rangle \geq \operatorname{RHS}\right\}$ which have Gaussian measure

$$
\delta \approx \exp \left(-(\mathrm{RHS})^{2} / 2\right) / \mathrm{RHS}=\Omega\left(\frac{n}{m \cdot \sqrt{\log \frac{m}{n}}}\right)
$$

When is a halfspace approximately a cap?

Theorem

If m halfspaces of Gaussian measure $\delta<\frac{1}{2}$ cover the \sqrt{n}-sphere in \mathbb{R}^{n},

$$
m \cdot \delta \geq \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)
$$

Theorem

If m spherical caps of size $2^{-o(\sqrt{n})} \leq \delta<1 / 2$ cover S^{n}, then $m \cdot \delta \geq \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)$

$C=\left\{x \in S^{n}:\langle x, p\rangle \geq \cos \theta\right\}$

When is a halfspace approximately a cap?

Theorem

If m halfspaces of Gaussian measure $\delta<\frac{1}{2}$ cover the \sqrt{n}-sphere in \mathbb{R}^{n},

$$
m \cdot \delta \geq \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)
$$

Theorem

If m spherical caps of size $2^{-o(\sqrt{n})} \leq \delta<1 / 2$ cover S^{n}, then $m \cdot \delta \geq \Omega\left(\frac{n}{\sqrt{\log \frac{m}{n}}}\right)$

$H=\left\{x \in \mathbb{R}^{n}:\langle x, p\rangle \geq \sqrt{n} \cos \theta\right\}$
$C=\left\{x \in S^{n}:\langle x, p\rangle \geq \cos \theta\right\}$
Lemma (large cap regime)
As long as $\operatorname{vol}(C) \geq 2^{-o(\sqrt{n})}$, then $\operatorname{vol}(C) \sim \gamma(H)$.

Outline

Introduction

Our Algorithm

Applications to Covering Problems

Open Problems

Open Problems

Hypercube \rightarrow Hypersphere Relaxation
Strategy to solve a problem $\max _{x \in\{ \pm 1\}^{n}} f(x)$:
(1) Relax the problem to $\max _{x \in \sqrt{n} \text {-sphere }} f(x)$
(2) Optimally solve the relaxed problem.
(3) Smartly round the solution to $\{-1,+1\}^{n}$.

Question

Are there non-degree-2 f which can be attacked using this strategy?

Other problems:

- For $\delta<2^{-\sqrt{n}}$, we have no nontrivial lower bound! Does the algorithm achieve anything here or is it inherently "Gaussian"?
- Chromatic number of the spherical distance graph $\left\{(x, y) \in\left(S^{n}, S^{n}\right):\langle x, y\rangle \leq \cos \theta\right\}$.
- Brownian motion algorithm?
- Improve the $(1+\varepsilon)$ error term to remove the $\sqrt{\log \frac{m}{n}}$ factor.

Thank you!

Thank you!

Open Problem \#1: Improve the Error Bounds

Theorem

Given unit vectors $u_{1}, \ldots, u_{m} \in \mathbb{R}^{n}$ and $m \geq 16 n$, there is a poly (m, n) deterministic algorithm that outputs a vector x satisfying

$$
\left\langle u_{i}, x\right\rangle \leq \sqrt{\frac{2 \ln \frac{m}{n}}{n}} \cdot\left(1+O\left(\frac{1}{\log \frac{m}{n}}\right)\right)
$$

Conjecture

The inner product can be improved to

$$
\left\langle u_{i}, x\right\rangle \leq \sqrt{\frac{2 \ln \frac{m}{n}}{n}} \cdot\left(1-\frac{\ln \ln \frac{m}{n}}{4 \ln \frac{m}{n}}+O\left(\frac{1}{\log \frac{m}{n}}\right)\right)
$$

This would remove the log factor from the $\Omega\left(\frac{n}{\sqrt{\log \left(1+\frac{m}{n}\right)}}\right)$ covering density lower bound.

For $\delta<2^{-\sqrt{n}}$, we had no bounds at all! Can we improve the analysis of the MWU algorithm to get a nontrivial bound here?

Open Problem \#2: Nonlinear Functions

A spherical cap is a halfspace in S^{n}. Can we strengthen the analysis to sets that are slightly nonlinear?

Define a distance graph in spherical space $S_{\geq \theta}^{n}$ by taking edges between points at angle at least θ.

An independent set in this graph is a set with diameter $\leq \theta$.
The chromatic number of this graph is finite; reasonable color classes are spherical caps of angular diameter θ.

Conjecture

For every $\theta, \chi\left(S_{>\theta}^{n}\right) \geq \Omega\left(m_{n, \theta}\right)$ where $m_{n, \theta}$ is the minimum number of spheres of diameter θ needed to cover S^{n}.

Open Problem \#3: Hypercube \rightarrow Hypersphere Relaxation

Strategy to solve a problem $\max _{x \in\{ \pm 1\}^{n}} f(x)$:
(1) Relax the problem to $\max _{x \in \sqrt{n} \text {-sphere }} f(x)$
(2) Optimally solve the relaxed problem.
(3) Smartly round the solution to $\{-1,+1\}^{n}$.

Question

What combinatorial optimization problems can be solved by relaxing $\{+1,-1\}^{n}$ to the \sqrt{n}-sphere?

Spectral algorithms apply this strategy to $f=$ degree-2 polynomial. Can any non-degree- 2 polynomial be solved this way?

Hardness of Approximation

Spherical Discrepancy Problem

Given unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$, compute

$$
\min _{x \in S^{n}} \max _{i}\left\langle u_{i}, x\right\rangle .
$$

A C-approximation is an algorithm which on an instance with value OPT outputs an x with value at most C. OPT.

Is it possible that a polynomial time $(1+\varepsilon)$-approximation exists for any fixed desired accuracy ε ?

Hardness of Approximation

Spherical Discrepancy Problem

Given unit vectors $u_{1}, \ldots, u_{m} \in S^{n}$, compute

$$
\min _{x \in S^{n}} \max _{i}\left\langle u_{i}, x\right\rangle .
$$

A C-approximation is an algorithm which on an instance with value OPT outputs an x with value at most C. OPT.

Is it possible that a polynomial time $(1+\varepsilon)$-approximation exists for any fixed desired accuracy ε ?

Theorem

There is a constant $C>1$ so that it is NP-hard to C-approximate Spherical Discrepancy.

Proof idea: Gap-preserving gadget reduction from MAX NAE-3-SAT.

